import torch import torch.distributed as dist import torch.nn as nn from colossalai.legacy.engine.gradient_handler._base_gradient_handler import BaseGradientHandler from colossalai.legacy.engine.gradient_handler.utils import bucket_allreduce from colossalai.legacy.registry import GRADIENT_HANDLER from colossalai.moe import SparseMLP from colossalai.moe.manager import MOE_MANAGER from colossalai.moe.utils import get_moe_epsize_param_dict class MoeModel(nn.Module): def __init__(self, enable_load_balance: bool = False): class TestSubModule(nn.Module): def __init__(self): super().__init__() self.moe = SparseMLP( num_experts=8, hidden_size=16, intermediate_size=32, enable_load_balance=enable_load_balance ) self.proj = nn.Linear(16, 4) def forward(self, x): x = self.moe(x) x = self.proj(x) return x super().__init__() self.test_embed = nn.Linear(4, 16) self.test_transform = TestSubModule() def forward(self, x): MOE_MANAGER.reset_loss() x = self.test_embed(x) x = self.test_transform(x) return x @GRADIENT_HANDLER.register_module class MoeGradientHandler(BaseGradientHandler): """A helper class to handle all-reduce operations in a data parallel group and moe model parallel. A all-reduce collective communication will be operated in :func:`handle_gradient` among a data parallel group. For better performance, it bucketizes the gradients of all parameters that are the same type to improve the efficiency of communication. Args: model (Module): Model where the gradients accumulate. optimizer (Optimizer): Optimizer for updating the parameters. """ def __init__(self, model, optimizer=None): super().__init__(model, optimizer) def handle_gradient(self): """A method running an all-reduce operation in a data parallel group. Then running an all-reduce operation for all parameters in experts across moe model parallel group """ if dist.get_world_size() > 1: epsize_param_dict = get_moe_epsize_param_dict(self._model) # epsize is 1, indicating the params are replicated among processes in data parallelism # use the ParallelMode.DATA to get data parallel group # reduce gradients for all parameters in data parallelism if 1 in epsize_param_dict: bucket_allreduce(param_list=epsize_param_dict[1]) for ep_size in epsize_param_dict: if ep_size != 1 and ep_size != MOE_MANAGER.world_size: bucket_allreduce( param_list=epsize_param_dict[ep_size], group=MOE_MANAGER.parallel_info_dict[ep_size].dp_group ) def assert_not_equal_in_group(tensor, process_group=None): # all gather tensors from different ranks world_size = dist.get_world_size(process_group) tensor_list = [torch.empty_like(tensor) for _ in range(world_size)] dist.all_gather(tensor_list, tensor, group=process_group) # check if they are equal one by one for i in range(world_size - 1): a = tensor_list[i] b = tensor_list[i + 1] assert not torch.allclose(a, b), \ (f"expected tensors on rank {i} and {i + 1} not to be equal " f"but they are, {a} vs {b}")