import os import time import pytest import torch import torch.nn as nn from rpc_test_utils import parse_args, rpc_run from titans.dataloader.cifar10 import build_cifar from torchvision.models import resnet50 from tqdm import tqdm from colossalai.pipeline.pipelinable import PipelinableContext from colossalai.pipeline.rpc import OneFOneBPipelineEngine def flatten(x): return torch.flatten(x, 1) def partition(pp_rank: int, chunk: int, stage_num: int): pipelinable = PipelinableContext() # build model partitions with pipelinable: # input : [B, 3, 32, 32] _ = resnet50() pipelinable.policy = "customized" exec_seq = [ 'conv1', 'bn1', 'relu', 'maxpool', 'layer1', 'layer2', 'layer3', 'layer4', 'avgpool', (flatten, "behind"), 'fc' ] pipelinable.to_layer_list(exec_seq) partition = pipelinable.partition(chunk, stage_num, pp_rank) return partition def run_master(args): batch_size = args.batch_size chunk = args.chunk device = args.device world_size = args.world_size stage_num = world_size num_microbatches = args.num_microbatches # build dataloader root = os.environ.get('DATA', './data') train_dataloader, test_dataloader = build_cifar(batch_size, root, padding=4, crop=32, resize=32) criterion = nn.CrossEntropyLoss() pp_engine = OneFOneBPipelineEngine(partition_fn=partition, stage_num=stage_num, num_microbatches=num_microbatches, device=device, chunk=chunk, criterion=criterion, checkpoint=False) pp_engine.initialize_optimizer(torch.optim.Adam, lr=1e-3) s = time.time() for bx, by in tqdm(train_dataloader): pp_engine.forward_backward(bx, labels=by, forward_only=False) cost_time = time.time() - s print("total cost time :", cost_time) print("cost time per batch:", cost_time / len(train_dataloader)) @pytest.mark.skip("Test for performance, no need for CI") def main(): args = parse_args() # this is due to limitation of partition function args.world_size = 2 args.chunk = 1 rpc_run(args, run_master) if __name__ == '__main__': main()