import os import pytest import torch import torch.distributed as dist from transformers import LlamaForCausalLM from utils import shared_tempdir import colossalai from colossalai.booster import Booster from colossalai.booster.plugin import GeminiPlugin from colossalai.lazy import LazyInitContext from colossalai.nn.optimizer import HybridAdam from colossalai.testing import ( check_state_dict_equal, clear_cache_before_run, parameterize, rerun_if_address_is_in_use, spawn, ) from tests.kit.model_zoo import model_zoo MODEL_PLACEMENT_CONFIGS = [ {"placement_policy": "static", "shard_param_frac": 0.0}, # zero2 {"placement_policy": "static", "shard_param_frac": 1.0}, # zero3 {"placement_policy": "static", "shard_param_frac": 0.5}, # zero3-half ] OPTIM_PLACEMENT_CONFIGS = [ {"placement_policy": "static", "shard_param_frac": 0.0, "offload_optim_frac": 0.0}, # zero2 {"placement_policy": "static", "shard_param_frac": 0.0, "offload_optim_frac": 1.0}, # zero2-offload {"placement_policy": "static", "shard_param_frac": 0.0, "offload_optim_frac": 0.5}, # zero2-offload-half ] @clear_cache_before_run() @parameterize("placement_config", MODEL_PLACEMENT_CONFIGS) @parameterize("model_name", ["transformers_bert_for_sequence_classification"]) @parameterize("use_safetensors", [False, True]) def exam_state_dict_with_origin(placement_config, model_name, use_safetensors: bool): from transformers import BertForSequenceClassification (model_fn, data_gen_fn, output_transform_fn, _, _) = next(iter(model_zoo.get_sub_registry(model_name).values())) bert_model = model_fn() with shared_tempdir() as tempdir: pretrained_path = os.path.join(tempdir, "pretrained") bert_model.config.save_pretrained(save_directory=pretrained_path) plugin = GeminiPlugin(**placement_config) booster = Booster(plugin=plugin) bert_model, _, _, _, _ = booster.boost(bert_model) model_size = sum(p.numel() * p.element_size() for p in bert_model.parameters()) / 1024**2 booster.save_model( bert_model, pretrained_path, True, True, "", (model_size / 3), use_safetensors=use_safetensors ) dist.barrier() new_bert_model = BertForSequenceClassification.from_pretrained(pretrained_path) check_state_dict_equal( bert_model.state_dict(only_rank_0=False, dtype=torch.float32), new_bert_model.state_dict(), False ) @clear_cache_before_run() @parameterize("placement_config", OPTIM_PLACEMENT_CONFIGS) @parameterize("shard", [False, True]) @parameterize("model_name", ["transformers_gpt"]) @parameterize("size_per_shard", [32]) def exam_state_dict(placement_config, shard: bool, model_name: str, size_per_shard: int): (model_fn, data_gen_fn, output_transform_fn, _, _) = next(iter(model_zoo.get_sub_registry(model_name).values())) criterion = lambda x: x.mean() plugin = GeminiPlugin(**placement_config, precision="fp16", initial_scale=(2**14)) booster = Booster(plugin=plugin) model = model_fn() new_model = model_fn() optimizer = HybridAdam(model.parameters(), lr=0.001) model, optimizer, criterion, _, _ = booster.boost(model, optimizer, criterion) new_optimizer = HybridAdam(new_model.parameters(), lr=0.001) new_model, new_optimizer, criterion, _, _ = booster.boost(new_model, new_optimizer, criterion) data = data_gen_fn() data = {k: v.to("cuda") if torch.is_tensor(v) or "Tensor" in v.__class__.__name__ else v for k, v in data.items()} output = model(**data) output = output_transform_fn(output) output_key = list(output.keys())[0] loss = criterion(output[output_key]) booster.backward(loss, optimizer) optimizer.step() with shared_tempdir() as tempdir: model_ckpt_path = f"{tempdir}/model" optimizer_ckpt_path = f"{tempdir}/optimizer" booster.save_model(model, model_ckpt_path, shard=shard, size_per_shard=size_per_shard) booster.save_optimizer(optimizer, optimizer_ckpt_path, shard=shard, size_per_shard=size_per_shard) dist.barrier() booster.load_model(new_model, model_ckpt_path) check_state_dict_equal(model.state_dict(only_rank_0=False), new_model.state_dict(only_rank_0=False), False) booster.load_optimizer(new_optimizer, optimizer_ckpt_path) check_state_dict_equal( optimizer.state_dict(only_rank_0=False), new_optimizer.state_dict(only_rank_0=False), False ) # Check the new model/optimizer can successfully run. data = data_gen_fn() data = { k: v.to("cuda") if torch.is_tensor(v) or "Tensor" in v.__class__.__name__ else v for k, v in data.items() } output = new_model(**data) output = output_transform_fn(output) output_key = list(output.keys())[0] loss = criterion(output[output_key]) booster.backward(loss, new_optimizer) new_optimizer.step() booster.save_model(new_model, model_ckpt_path, shard=shard) booster.save_optimizer(new_optimizer, optimizer_ckpt_path, shard=shard) def exam_lazy_from_pretrained(): llama_path = os.environ["LLAMA_PATH"] plugin = GeminiPlugin() booster = Booster(plugin=plugin) orig_model = LlamaForCausalLM.from_pretrained(llama_path) orig_state_dict = {k: v.half() for k, v in orig_model.state_dict().items()} with LazyInitContext(): model = LlamaForCausalLM.from_pretrained(llama_path) model, *_ = booster.boost(model) with shared_tempdir() as tempdir: save_path = os.path.join(tempdir, "model.pt") booster.save_model(model, save_path, shard=False) dist.barrier() state_dict = torch.load(save_path, map_location="cpu") check_state_dict_equal(state_dict, orig_state_dict, False) def run_dist(rank, world_size, port): config = {} colossalai.launch(config=config, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl") exam_state_dict() exam_state_dict_with_origin() exam_lazy_from_pretrained() @pytest.mark.dist @pytest.mark.parametrize("world_size", [2]) @rerun_if_address_is_in_use() def test_gemini_ckpIO(world_size): spawn(run_dist, world_size)