from typing import Union import torch import torch.nn as nn from torch import Tensor from torch.optim import Optimizer class OptimizerWrapper: """ A standard interface for optimizers wrapped by the Booster. Args: optim (Optimizer): The optimizer to be wrapped. """ def __init__(self, optim: Optimizer): self.optim = optim @property def parameters(self): params = [] for group in self.param_groups: params += group["params"] return params @property def param_groups(self): return self.optim.param_groups @property def defaults(self): return self.optim.defaults def add_param_group(self, *args, **kwargs): return self.optim.add_param_group(*args, **kwargs) def step(self, *args, **kwargs): """ Performs a single optimization step. """ return self.optim.step(*args, **kwargs) def zero_grad(self, *args, **kwargs): """ Clears the gradients of all optimized `torch.Tensor`. """ self.optim.zero_grad(*args, **kwargs) def backward(self, loss: Tensor, *args, **kwargs): """ Performs a backward pass on the loss. """ loss.backward(*args, **kwargs) def backward_by_grad(self, tensor: Tensor, grad: Tensor): torch.autograd.backward(tensor, grad) def state_dict(self): """ Returns the optimizer state. """ return self.optim.state_dict() def load_state_dict(self, *args, **kwargs): """ Loads the optimizer state. """ self.optim.load_state_dict(*args, **kwargs) def clip_grad_by_value(self, clip_value: float, *args, **kwargs) -> None: """ Clips gradient of an iterable of parameters at specified min and max values. Args: clip_value (float or int): maximum allowed value of the gradients. Gradients are clipped in the range Note: In PyTorch Torch 2.0 and above, you can pass in foreach=True as kwargs to clip_grad_value_ to use the faster implementation. Please refer to the PyTorch documentation for more details. """ nn.utils.clip_grad_value_(self.parameters, clip_value, *args, **kwargs) def clip_grad_by_norm( self, max_norm: Union[float, int], norm_type: Union[float, int] = 2.0, error_if_nonfinite: bool = False, *args, **kwargs, ) -> Tensor: """ Clips gradient norm of an iterable of parameters. Args: max_norm (float or int): max norm of the gradients norm_type (float or int): type of the used p-norm. Can be ``'inf'`` for infinity norm. error_if_nonfinite (bool): if True, an error is raised if the total norm is non-finite. Default: False Note: In PyTorch Torch 2.0 and above, you can pass in foreach=True as kwargs to clip_grad_norm_ to use the faster implementation. Please refer to the PyTorch documentation for more details. """ norm = nn.utils.clip_grad_norm_(self.parameters, max_norm, norm_type, error_if_nonfinite, *args, **kwargs) return norm def scale_loss(self, loss: Tensor): """ Scales the loss for mixed precision training. Note: Only available for optimizers with mixed precision training. Args: loss (Tensor): The loss to be scaled. """ raise NotImplementedError( "The method scale_loss is only available for optimizers with mixed precision training" ) def unscale_grad(self): """ Unscale the gradients for mixed precision training. Note: Only available for optimizers with mixed precision training. """ raise NotImplementedError( "The method unscale_grad is only available for optimizers with mixed precision training" ) def unwrap(self): """ Unwrap the optimizer for checkpoint saving/loading. """ return self.optim