import pytest import torch import torch.distributed as dist from apex import amp from torch.nn.parallel import DistributedDataParallel as DDP from torch.testing import assert_close import colossalai from colossalai.accelerator import get_accelerator from colossalai.nn.optimizer import HybridAdam from colossalai.testing import DummyDataloader, parameterize, rerun_if_address_is_in_use, spawn from colossalai.utils import set_seed from colossalai.zero import GeminiDDP, GeminiOptimizer from colossalai.zero.gemini.chunk import search_chunk_configuration from tests.kit.model_zoo import model_zoo, run_fwd PLACEMENT_CONFIGS = [ {"placement_policy": "static", "shard_param_frac": 0.75}, {"placement_policy": "auto"}, ] def check_grad(model: GeminiDDP, torch_model: torch.nn.Module): chunk_manager = model.chunk_manager grad_chunk_list = [] device_list = [] # Access gradient chunks. for p in model.parameters(): grad_chunk = chunk_manager.get_chunk(p).grad_chunk if grad_chunk not in grad_chunk_list: chunk_manager.access_chunk(grad_chunk) grad_chunk_list.append(grad_chunk) device_list.append(model.grads_device[p]) # Compare gradients. for p0, p1 in zip(model.parameters(), torch_model.parameters()): assert_close(p0, p1.grad, rtol=2e-3, atol=2e-2) # Release gradient chunks and move them to gradient device. for grad_chunk, device in zip(grad_chunk_list, device_list): chunk_manager.release_chunk(grad_chunk) chunk_manager.move_chunk(grad_chunk, device, force_copy=True) @parameterize("placement_config", PLACEMENT_CONFIGS) @parameterize("keep_gathered", [False, True]) @parameterize("model_name", ["transformers_gpt_lm"]) @parameterize("master_weights", [False, True]) @parameterize("use_grad_checkpoint", [False, True]) @parameterize("max_prefetch", [0, 4]) @parameterize("enable_async_reduce", [False, True]) def exam_gemini_grad_acc( placement_config, keep_gathered: bool, model_name: str, master_weights: bool, use_grad_checkpoint: bool, max_prefetch: int, enable_async_reduce: bool, ): init_device = get_accelerator().get_current_device() model_builder, data_gen_fn, output_transform_fn, loss_fn, *_ = next( iter(model_zoo.get_sub_registry(model_name).values()) ) set_seed(42) gemini_model = model_builder() set_seed(42) torch_model = model_builder().cuda() for torch_p, p in zip(torch_model.parameters(), gemini_model.parameters()): torch_p.data.copy_(p.data) if use_grad_checkpoint: gemini_model.gradient_checkpointing_enable() torch_model.gradient_checkpointing_enable() world_size = torch.distributed.get_world_size() config_dict, *_ = search_chunk_configuration(gemini_model, search_range_m=1, search_interval=100) config_dict[world_size]["chunk_size"] = 5000 config_dict[world_size]["keep_gathered"] = keep_gathered gemini_model = GeminiDDP( gemini_model, config_dict, init_device, pin_memory=True, enable_gradient_accumulation=True, master_weights=master_weights, max_prefetch=max_prefetch, enable_async_reduce=enable_async_reduce, **placement_config, ) optimizer = HybridAdam(gemini_model.parameters(), lr=1e-3) gemini_optim = GeminiOptimizer( optimizer, gemini_model, initial_scale=1, max_norm=1.0, enable_async_reduce=enable_async_reduce ) rank = dist.get_rank() # setting master_weights to False will cause overflow after optimizer.step() amp_config = dict( opt_level="O2", keep_batchnorm_fp32=False, loss_scale=1, min_loss_scale=1, max_loss_scale=1, master_weights=True ) torch_optim = torch.optim.Adam(torch_model.parameters(), lr=1e-3) torch_model, torch_optim = amp.initialize(torch_model, torch_optim, **amp_config) torch_model = DDP(torch_model, device_ids=[rank]) set_seed(rank) accum_iter = 2 train_dataloader = DummyDataloader(data_gen_fn) for i, data in enumerate(train_dataloader): delay_unscale = False if (i + 1) % accum_iter == 0 else True data = {k: v.cuda() if isinstance(v, torch.Tensor) else v for k, v in data.items()} set_seed(42 + rank) torch_loss = run_fwd(torch_model, data, output_transform_fn, loss_fn) torch_loss = torch_loss / accum_iter with amp.scale_loss(torch_loss, torch_optim, delay_unscale=delay_unscale) as scaled_loss: scaled_loss.backward() set_seed(42 + rank) gemini_loss = run_fwd(gemini_model, data, output_transform_fn, loss_fn) gemini_loss = gemini_loss / accum_iter gemini_optim.backward(gemini_loss) assert torch.allclose(torch_loss.float(), gemini_loss.float(), rtol=1e-3, atol=1e-5) check_grad(gemini_model, torch_model) if (i + 1) % accum_iter == 0: torch.nn.utils.clip_grad_norm_(amp.master_params(torch_optim), 1.0) torch_optim.step() gemini_optim.step() torch_optim.zero_grad() # check updated param torch_dict = torch_model.state_dict() gemini_dict = gemini_model.state_dict(only_rank_0=False) for key, value in gemini_dict.items(): torch_key = "module." + key torch_value = torch_dict[torch_key].to(value.device).to(value.dtype) assert_close(value, torch_value, rtol=1e-3, atol=2e-3) if i == accum_iter: break def run_dist(rank, world_size, port): colossalai.launch(rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl") exam_gemini_grad_acc() @pytest.mark.dist @rerun_if_address_is_in_use() def test_grad_accumulation(): spawn(run_dist, 2) if __name__ == "__main__": test_grad_accumulation()