import copy from functools import partial from types import MethodType import pytest import torch import torch.distributed as dist import torch.nn as nn import colossalai from colossalai.cluster import ProcessGroupMesh from colossalai.interface import OptimizerWrapper from colossalai.pipeline.schedule.interleaved_pp import InterleavedSchedule from colossalai.pipeline.stage_manager import PipelineStageManager from colossalai.testing import rerun_if_address_is_in_use, spawn from colossalai.testing.random import seed_all NUM_LAYER = 8 DIM = 4 class MlpModel(nn.Module): def __init__(self): super().__init__() self.layers = nn.ModuleList([nn.Linear(DIM, DIM) for _ in range(NUM_LAYER)]) def forward(self, x): for layer in self.layers: x = layer(x) return x def pp_linear_fwd( forward, data: torch.Tensor = None, input_obj: torch.Tensor = None, stage_mgr: PipelineStageManager = None, model_chunk_id: int = None, ): with stage_mgr.switch_model_chunk_id(model_chunk_id): if stage_mgr.is_first_stage(): return {"input_obj": forward(data)} elif stage_mgr.is_last_stage(): return forward(input_obj) else: return {"input_obj": forward(input_obj)} def run_pp( rank: int, world_size: int, port: int, num_microbatch: int, batch_size: int, num_model_chunk: int, ): """ This test is to examine the correctness of interleaved 1F1B, compared with torch. Be aware it contains some hardcodes. """ colossalai.launch(rank=rank, world_size=world_size, port=port, host="localhost") # create model seed_all(1453) torch_model = MlpModel().cuda() pp_model = copy.deepcopy(torch_model).cuda() pg_mesh = ProcessGroupMesh(world_size) stage_manager = PipelineStageManager( pg_mesh, pipeline_axis=0, enable_interleave=True, num_model_chunks=num_model_chunk ) schedule = InterleavedSchedule( stage_manager=stage_manager, num_model_chunks=num_model_chunk, num_microbatch=num_microbatch, ) sharded_model = torch.nn.ModuleList() for idx, sub_model in enumerate(pp_model.layers): if idx % world_size == rank: sub_model._forward = sub_model.forward sub_model.forward = MethodType( partial(pp_linear_fwd, stage_mgr=stage_manager, model_chunk_id=len(sharded_model)), sub_model._forward, ) sharded_model.append(sub_model.cuda()) assert len(sharded_model) == num_model_chunk, "num_model_chunk is not correct" # create optimizer torch_optimizer = torch.optim.SGD(torch_model.parameters(), lr=1e-5) pp_optimizer = OptimizerWrapper(torch.optim.SGD(sharded_model.parameters(), lr=1e-5)) # create data seed_all(115) input_list = [torch.rand(batch_size, DIM).cuda()] dist.all_reduce(input_list[0]) def criterion(x, *args, **kwargs): return (x * x).mean() # forward and backward torch_output = torch_model(input_list[0]) torch_loss = criterion(torch_output) torch_loss.backward() pp_ret = schedule.forward_backward_step(sharded_model, iter(input_list), criterion, pp_optimizer, return_loss=True) # check loss if stage_manager.is_last_stage(ignore_chunk=True): assert torch.allclose(torch_loss, pp_ret["loss"]) # check gradients for i in range(num_model_chunk): idx = world_size * i + rank assert torch.allclose(torch_model.layers[idx].weight.grad, sharded_model[i].weight.grad) assert torch.allclose(torch_model.layers[idx].bias.grad, sharded_model[i].bias.grad) # step torch_optimizer.step() pp_optimizer.step() pp_optimizer.zero_grad() # check updated param for i in range(num_model_chunk): idx = world_size * i + rank assert torch.allclose(torch_model.layers[idx].weight, sharded_model[i].weight) assert torch.allclose(torch_model.layers[idx].bias, sharded_model[i].bias) # forward only with torch.no_grad(): torch_output = torch_model(input_list[0]) torch_loss = criterion(torch_output) pp_ret = schedule.forward_backward_step( sharded_model, iter(input_list), criterion, pp_optimizer, return_loss=True ) if stage_manager.is_last_stage(ignore_chunk=True): assert torch.allclose(torch_loss, pp_ret["loss"]) for layer in sharded_model: if layer.weight.grad is None: assert layer.weight.grad is None and layer.bias.grad is None else: assert torch.allclose(layer.weight.grad, torch.zeros_like(layer.weight.grad)) assert torch.allclose(layer.bias.grad, torch.zeros_like(layer.bias.grad)) @pytest.mark.dist @pytest.mark.parametrize("num_microbatch", [4, 12]) @pytest.mark.parametrize("batch_size", [12]) @pytest.mark.parametrize("num_model_chunk", [2, 4]) @rerun_if_address_is_in_use() def test_pp(num_microbatch: int, batch_size: int, num_model_chunk: int): assert NUM_LAYER % num_model_chunk == 0 spawn( run_pp, nprocs=NUM_LAYER // num_model_chunk, num_microbatch=num_microbatch, batch_size=batch_size, num_model_chunk=num_model_chunk, ) if __name__ == "__main__": test_pp(num_microbatch=4, batch_size=4, num_model_chunk=4)