import copy import pytest import torch import torch.nn as nn from torch.nn.parallel import DistributedDataParallel as DDP from torch.testing import assert_close import colossalai from colossalai.testing import spawn from colossalai.testing.random import seed_all from colossalai.utils import conditional_context from colossalai.zero import LowLevelZeroOptimizer class MlpModel(nn.Module): def __init__(self): super(MlpModel, self).__init__() self.linear1 = nn.Linear(128, 256) self.linear2 = nn.Linear(256, 512) def forward(self, x): x = self.linear1(x) x = self.linear2(x) return x def exam_zero_1_2_grad_acc(): local_rank = torch.distributed.get_rank() seed_all(2009) # create model zero1_model = MlpModel().cuda() zero2_model = copy.deepcopy(zero1_model) # create optimizer zero1_optimizer = torch.optim.Adam(zero1_model.parameters(), lr=1) zero2_optimizer = torch.optim.Adam(zero2_model.parameters(), lr=1) zero1_optimizer = LowLevelZeroOptimizer( zero1_optimizer, overlap_communication=True, initial_scale=32, clip_grad_norm=1.0, verbose=True ) zero2_optimizer = LowLevelZeroOptimizer( zero2_optimizer, overlap_communication=True, partition_grad=True, initial_scale=32, clip_grad_norm=1.0 ) # create data seed_all(2021 + local_rank) input_data1 = torch.randn(32, 128).cuda() input_data2 = torch.randn(32, 128).cuda() def fwd_bwd_func(number, cur_data, check_flag): # zero-dp forward zero1_output = zero1_model(cur_data) zero2_output = zero2_model(cur_data) assert torch.equal(zero1_output, zero2_output) # zero-dp backward zero1_optimizer.backward(zero1_output.sum().float()) zero2_optimizer.backward(zero2_output.sum().float()) fwd_bwd_func(0, input_data1, True) fwd_bwd_func(1, input_data2, False) # step zero1_optimizer.step() zero2_optimizer.step() # check updated param for z1p, z2p in zip(zero1_model.parameters(), zero2_model.parameters()): assert torch.equal(z1p.data, z2p.data) def exam_zero_1_grad_acc(sync): local_rank = torch.distributed.get_rank() seed_all(2008) # create models zero_model = MlpModel() torch_model = copy.deepcopy(zero_model) seed_all(2008) zero_model = zero_model.cuda() torch_model = DDP(torch_model.cuda(), bucket_cap_mb=0) # create optimizer zero_optimizer = torch.optim.Adam(zero_model.parameters(), lr=1) # we only test stage 1 here # in `check_sharded_param_consistency.py`, we will test whether # level 1 and 2 will produce exactly the same results zero_optimizer = LowLevelZeroOptimizer( zero_optimizer, overlap_communication=False, reduce_bucket_size=262144, clip_grad_norm=1.0 ) torch_optimizer = torch.optim.Adam(torch_model.parameters(), lr=1) # create data seed_all(2022 + local_rank) input_data1 = torch.randn(32, 128).cuda() input_data2 = torch.randn(32, 128).cuda() def fwd_bwd_func(no_sync, cur_data, check_flag): # zero1 fwd and bwd with conditional_context(zero_optimizer.no_sync(), no_sync): zero_output = zero_model(cur_data) zero_optimizer.backward(zero_output.sum().float()) # torch-ddp fwd and bwd with conditional_context(torch_model.no_sync(), no_sync): torch_output = torch_model(cur_data) assert torch.equal(zero_output, torch_output) torch_output.sum().backward() if check_flag: # check grad for (n, p), z1p in zip(torch_model.named_parameters(), zero_model.parameters()): assert torch.equal(p.grad, z1p.grad) fwd_bwd_func(sync, input_data1, sync) fwd_bwd_func(False, input_data2, False) zero_optimizer.step() torch.nn.utils.clip_grad_norm_(torch_model.parameters(), 1.0) torch_optimizer.step() # check updated param for (n, p), z1p in zip(torch_model.named_parameters(), zero_model.parameters()): # print(n, p.shape, torch.max(p.data), torch.max(z1p.data), torch.max(torch.abs(p.data - z1p.data))) assert_close(p.data, z1p.data) def run_dist(rank, world_size, port): colossalai.launch(config=dict(), rank=rank, world_size=world_size, port=port, host="localhost") exam_zero_1_grad_acc(sync=True) exam_zero_1_grad_acc(sync=False) exam_zero_1_2_grad_acc() @pytest.mark.dist def test_grad_accumulation(): spawn(run_dist, 2) if __name__ == "__main__": test_grad_accumulation()