import os import pytest import torch import torch.distributed as dist from packaging import version from transformers import AutoTokenizer import colossalai from colossalai.inference.tensor_parallel.engine import TPInferEngine from colossalai.logging import disable_existing_loggers from colossalai.shardformer import ShardConfig from colossalai.shardformer.modeling.chatglm2_6b.modeling_chatglm import ChatGLMForConditionalGeneration from colossalai.testing import clear_cache_before_run, parameterize, rerun_if_address_is_in_use, spawn from tests.kit.model_zoo.transformers.chatglm2 import infer_config os.environ["TRANSFORMERS_NO_ADVISORY_WARNINGS"] = "true" TPSIZE = 1 BATCH_SIZE = 8 MAX_INPUT_LEN = 12 MAX_OUTPUT_LEN = 100 CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse("11.5") @parameterize( "test_config", [ { "tp_size": TPSIZE, } ], ) def run_chatglm2_test(test_config): tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True) # pad_token_id = 0 model_fn = lambda: ChatGLMForConditionalGeneration(infer_config, empty_init=False) orig_model = model_fn() orig_model = orig_model.half() text = ["how is the weather today?"] input_ids = tokenizer.batch_encode_plus(text, return_tensors="pt", padding=True) shard_config = ShardConfig( enable_tensor_parallelism=True if test_config["tp_size"] > 1 else False, inference_only=True ) infer_engine = TPInferEngine(orig_model, shard_config, BATCH_SIZE, MAX_INPUT_LEN, MAX_OUTPUT_LEN) generate_kwargs = dict(max_new_tokens=MAX_OUTPUT_LEN, do_sample=False) outputs = infer_engine.generate(input_ids, **generate_kwargs) assert outputs is not None # print("outputs.shape: ", outputs[0].shape) # print("outputs: ", outputs[0]) if not dist.is_initialized() or dist.get_rank() == 0: for o in outputs: output_text = tokenizer.decode(o) print(output_text) def check_chatglm2(rank, world_size, port): disable_existing_loggers() colossalai.launch(config={}, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl") run_chatglm2_test() @pytest.mark.skipif(not CUDA_SUPPORT, reason="kv-cache manager engine requires cuda version to be higher than 11.5") @pytest.mark.dist @rerun_if_address_is_in_use() @clear_cache_before_run() def test_chatglm2(): spawn(check_chatglm2, TPSIZE) if __name__ == "__main__": test_chatglm2()