from typing import Any, List, OrderedDict import torch import torch.distributed as dist from torch import Tensor from torch.distributed import ProcessGroup from torch.testing import assert_close from torch.utils._pytree import tree_flatten def assert_equal(a: Tensor, b: Tensor): assert torch.all(a == b), f"expected a and b to be equal but they are not, {a} vs {b}" def assert_not_equal(a: Tensor, b: Tensor): assert not torch.all(a == b), f"expected a and b to be not equal but they are, {a} vs {b}" def assert_close_loose(a: Tensor, b: Tensor, rtol: float = 1e-3, atol: float = 1e-3): assert_close( a, b, rtol=rtol, atol=atol, msg=f"Tensor not close, shape: {a.shape} vs {b.shape}, \ dtype: {a.dtype} vs {b.dtype}", ) def assert_equal_in_group(tensor: Tensor, process_group: ProcessGroup = None): # all gather tensors from different ranks world_size = dist.get_world_size(process_group) tensor_list = [torch.empty_like(tensor) for _ in range(world_size)] dist.all_gather(tensor_list, tensor, group=process_group) # check if they are equal one by one for i in range(world_size - 1): a = tensor_list[i] b = tensor_list[i + 1] assert torch.all(a == b), f"expected tensors on rank {i} and {i + 1} to be equal but they are not, {a} vs {b}" def check_state_dict_equal(d1: OrderedDict, d2: OrderedDict, ignore_device: bool = True, ignore_dtype: bool = False): assert len(list(d1.keys())) == len( list(d2.keys()) ), f"Number of keys unequal: {len(list(d1.keys()))} vs {len(list(d2.keys()))}" for k, v1 in d1.items(): assert k in d2 v2 = d2[k] if isinstance(v1, dict): assert isinstance(v2, dict) check_state_dict_equal(v1, v2, ignore_device) elif isinstance(v1, list): assert isinstance(v2, list) for v1_i, v2_i in zip(v1, v2): if isinstance(v1_i, torch.Tensor): assert isinstance(v2_i, torch.Tensor) if not ignore_device: v1_i = v1_i.to("cpu") v2_i = v2_i.to("cpu") if ignore_dtype: v1_i = v1_i.to(v2_i.dtype) assert_close_loose(v1_i, v2_i) elif isinstance(v1_i, dict): assert isinstance(v2_i, dict) check_state_dict_equal(v1_i, v2_i, ignore_device) else: assert v1_i == v2_i, f"{v1_i} not equals to {v2_i}" elif isinstance(v1, torch.Tensor): assert isinstance(v2, torch.Tensor) if not ignore_device: v1 = v1.to("cpu") v2 = v2.to("cpu") if ignore_dtype: v1 = v1.to(v2.dtype) assert_close_loose(v1, v2) else: assert v1 == v2, f"{v1} not equals to {v2}" def check_state_dict_equal_pytree(d1: OrderedDict, d2: OrderedDict, ignore_device: bool = True): flat_d1, _ = tree_flatten(d1) flat_d2, _ = tree_flatten(d2) assert len(flat_d1) == len(flat_d2) for v1, v2 in zip(flat_d1, flat_d2): if isinstance(v1, torch.Tensor): assert isinstance(v2, torch.Tensor) if not ignore_device: v1 = v1.to("cpu") v2 = v2.to("cpu") assert_close_loose(v1, v2) else: assert v1 == v2, f"{v1} not equals to {v2}" def assert_hf_output_close( out1: Any, out2: Any, ignore_keys: List[str] = None, track_name: str = "", atol=1e-5, rtol=1e-5 ): """ Check if two outputs from huggingface are equal. Args: out1 (Any): the first output out2 (Any): the second output ignore_keys (List[str]): the keys to ignore when comparing two dicts track_name (str): the name of the value compared, used to track the path """ if isinstance(out1, dict) and isinstance(out2, dict): # if two values are dict # we recursively check the keys assert set(out1.keys()) == set(out2.keys()) for k in out1.keys(): if ignore_keys is not None and k in ignore_keys: continue assert_hf_output_close( out1[k], out2[k], track_name=f"{track_name}.{k}", ignore_keys=ignore_keys, atol=atol, rtol=rtol ) elif isinstance(out1, (list, tuple)) and isinstance(out2, (list, tuple)): # if two values are list # we recursively check the elements assert len(out1) == len(out2) for i in range(len(out1)): assert_hf_output_close( out1[i], out2[i], track_name=f"{track_name}.{i}", ignore_keys=ignore_keys, atol=atol, rtol=rtol ) elif isinstance(out1, Tensor) and isinstance(out2, Tensor): if out1.shape != out2.shape: raise AssertionError(f"{track_name}: shape mismatch: {out1.shape} vs {out2.shape}") assert torch.allclose( out1, out2, atol=atol, rtol=rtol ), f"{track_name}: tensor value mismatch\nvalue 1: {out1}\nvalue 2: {out2}, \nmean error: {torch.abs(out1 - out2).mean()}" else: assert out1 == out2, f"{track_name}: value mismatch.\nout1: {out1}\nout2: {out2}"