import math import torch.distributed as dist from colossalai.registry import DIST_GROUP_INITIALIZER from .process_group_initializer import ProcessGroupInitializer from ..parallel_mode import ParallelMode from colossalai.global_variables import tensor_parallel_env as env def _check_summa_env_var(summa_dim): # check environment variable for SUMMA env_summa_dim = env.summa_dim if env_summa_dim: assert int(env_summa_dim) == summa_dim, \ 'SUMMA_DIM has been set in the current environment and ' \ 'does not match with the value passed to this initialized' else: env.summa_dim = summa_dim class Initializer_2D_Row(ProcessGroupInitializer): """2d tensor parallel initialization among rows. :param num_group: The number of all tensor groups :param summa_dim: The dimension of SUMMA :param args: Args used to initialize base class :param kwargs: Kwargs used to initialize base class :type num_group: int :type summa_dim: int """ def __init__(self, num_group, summa_dim, *args, **kwargs): super(Initializer_2D_Row, self).__init__(*args, **kwargs) self.num_group = num_group self.summa_dim = summa_dim def init_dist_group(self): """Initialize 2D tensor row parallel groups, and assign local_ranks and groups to each gpu. :return: 2D tensor row parallelism's information :rtype: Tuple(local_rank, group_world_size, process_group, ranks_in_group, mode) """ local_rank = None ranks_in_group = None process_group = None group_world_size = None mode = ParallelMode.PARALLEL_2D_ROW for i in range(self.num_group): for j in range(self.summa_dim): ranks = [i * self.tensor_parallel_size + j * self.summa_dim + k for k in range(self.summa_dim)] group = dist.new_group(ranks) if self.rank in ranks: local_rank = ranks.index(self.rank) group_world_size = len(ranks) process_group = group ranks_in_group = ranks return local_rank, group_world_size, process_group, ranks_in_group, mode class Initializer_2D_Col(ProcessGroupInitializer): """2d tensor parallel initialization among cols. :param num_group: The number of all tensor groups :param summa_dim: The dimension of SUMMA :param args: Args used to initialize base class :param kwargs: Kwargs used to initialize base class :type num_group: int :type summa_dim: int """ def __init__(self, num_group, summa_dim, *args, **kwargs): super(Initializer_2D_Col, self).__init__(*args, **kwargs) self.num_group = num_group self.summa_dim = summa_dim def init_dist_group(self): """Initialize 2D tensor row parallel groups, and assign local_ranks and groups to each gpu. :return: 2D tensor col parallelism's information :rtype: Tuple(local_rank, group_world_size, process_group, ranks_in_group, mode) """ local_rank = None ranks_in_group = None process_group = None group_world_size = None mode = ParallelMode.PARALLEL_2D_COL for i in range(self.num_group): for j in range(self.summa_dim): ranks = [i * self.tensor_parallel_size + j + k * self.summa_dim for k in range(self.summa_dim)] group = dist.new_group(ranks) if self.rank in ranks: local_rank = ranks.index(self.rank) group_world_size = len(ranks) process_group = group ranks_in_group = ranks return local_rank, group_world_size, process_group, ranks_in_group, mode @DIST_GROUP_INITIALIZER.register_module class Initializer_2D(ProcessGroupInitializer): """ Serve as the single entry point to 2D parallel initialization. :param args: Args used to initialize ProcessGroupInitializer :param kwargs: Kwargs used to initialize ProcessGroupInitializer """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.num_group = self.world_size // self.tensor_parallel_size self.summa_dim = int(math.sqrt(self.tensor_parallel_size)) assert self.tensor_parallel_size == self.summa_dim ** 2, \ "2D summa dim should equal to tensor parallel size ^ 0.5" _check_summa_env_var(self.summa_dim) self.col_initializer = Initializer_2D_Col(self.num_group, self.summa_dim, *args, **kwargs) self.row_initializer = Initializer_2D_Row(self.num_group, self.summa_dim, *args, **kwargs) def init_dist_group(self): """Initialize 2D tensor row and col parallel groups, and assign local_ranks and groups to each gpu. :return: 2D tensor parallelism's information :rtype: list of Tuples (local_rank, group_world_size, process_group, ranks_in_group, mode) """ parallel_setting = [self.row_initializer.init_dist_group(), self.col_initializer.init_dist_group()] return parallel_setting