import pytest import torch import torch.distributed as dist from torch.nn.parallel import DistributedDataParallel as DDP from torch.testing import assert_close import colossalai from colossalai.legacy.amp import convert_to_apex_amp from colossalai.nn.optimizer import HybridAdam from colossalai.testing import DummyDataloader, parameterize, rerun_if_address_is_in_use, spawn from colossalai.utils import set_seed from colossalai.zero import GeminiDDP, GeminiOptimizer from colossalai.zero.gemini.chunk import search_chunk_configuration from tests.kit.model_zoo import model_zoo, run_fwd_bwd PLACEMENT_CONFIGS = [ { "placement_policy": "static", "shard_param_frac": 0.0, "offload_optim_frac": 0.0, "offload_param_frac": 0.0, }, # zero2 { "placement_policy": "static", "shard_param_frac": 0.0, "offload_optim_frac": 1.0, "offload_param_frac": 0.0, }, # zero2-offload { "placement_policy": "static", "shard_param_frac": 0.0, "offload_optim_frac": 0.5, "offload_param_frac": 0.0, }, # zero2-offload-half {"placement_policy": "auto"}, ] def check_param(model: GeminiDDP, torch_model: torch.nn.Module): zero_dict = model.state_dict(only_rank_0=False) torch_dict = torch_model.state_dict() for key, value in torch_dict.items(): # key is 'module.model.PARAMETER', so we truncate it key = key[7:] assert key in zero_dict, "{} not in ZeRO dictionary.".format(key) temp_zero_value = zero_dict[key].to(device=value.device, dtype=value.dtype) # debug_print([0], "max range: ", key, torch.max(torch.abs(value - temp_zero_value))) assert_close(value, temp_zero_value, rtol=1e-3, atol=4e-3) @parameterize("placement_config", PLACEMENT_CONFIGS) @parameterize("model_name", ["transformers_gpt_lm"]) @parameterize("master_weights", [True, False]) @parameterize("max_prefetch", [0, 1, 4]) @parameterize("enable_async_reduce", [False, True]) def exam_grad_clipping( placement_config, model_name: str, master_weights: bool, max_prefetch: int, enable_async_reduce: bool ): set_seed(1912) model_builder, data_gen_fn, output_transform_fn, loss_fn, *_ = next( iter(model_zoo.get_sub_registry(model_name).values()) ) torch_model = model_builder().cuda() amp_config = dict(opt_level="O2", keep_batchnorm_fp32=False, loss_scale=32) torch_optim = torch.optim.Adam(torch_model.parameters(), lr=1e-3) torch_model, torch_optim = convert_to_apex_amp(torch_model, torch_optim, amp_config) torch_model = DDP(torch_model, device_ids=[dist.get_rank()]) model = model_builder() for torch_p, p in zip(torch_model.parameters(), model.parameters()): p.data.copy_(torch_p.data) world_size = torch.distributed.get_world_size() config_dict, *_ = search_chunk_configuration(model, search_range_m=1, search_interval=100) config_dict[world_size]["chunk_size"] = 5000 config_dict[world_size]["keep_gathered"] = False if placement_config["placement_policy"] != "cuda": init_device = torch.device("cpu") else: init_device = None model = GeminiDDP( model, chunk_config_dict=config_dict, chunk_init_device=init_device, pin_memory=True, master_weights=master_weights, max_prefetch=max_prefetch, enable_async_reduce=enable_async_reduce, **placement_config, ) optimizer = HybridAdam(model.parameters(), lr=1e-3) zero_optim = GeminiOptimizer(optimizer, model, initial_scale=32, max_norm=1.0) model.train() torch_model.train() set_seed(dist.get_rank() * 3 + 128) train_dataloader = DummyDataloader(data_gen_fn) for i, data in enumerate(train_dataloader): if i > 2: break data = {k: v.cuda() if isinstance(v, torch.Tensor) else v for k, v in data.items()} zero_optim.zero_grad() torch_optim.zero_grad() run_fwd_bwd(torch_model, data, output_transform_fn, loss_fn, optimizer=torch_optim) run_fwd_bwd(model, data, output_transform_fn, loss_fn, optimizer=zero_optim) import apex.amp as apex_amp torch.nn.utils.clip_grad_norm_(apex_amp.master_params(torch_optim), 1.0) torch_optim.step() zero_optim.step() if master_weights: check_param(model, torch_model) def run_dist(rank, world_size, port): colossalai.launch(rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl") exam_grad_clipping() @pytest.mark.dist @pytest.mark.parametrize("world_size", [1, 2]) @rerun_if_address_is_in_use() def test_grad_clip(world_size): spawn(run_dist, world_size) if __name__ == "__main__": test_grad_clip(2)