from contextlib import nullcontext import torch import torch.distributed as dist import colossalai from colossalai.booster import Booster from colossalai.booster.plugin import GeminiPlugin from colossalai.fx import is_compatible_with_meta from colossalai.nn.optimizer import HybridAdam from colossalai.tensor.colo_parameter import ColoParameter from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn from colossalai.zero import ColoInitContext from tests.kit.model_zoo import model_zoo @parameterize('init_method', ['lazy', 'none', 'colo']) def check_gemini_plugin(init_method: str = 'none', early_stop: bool = True): """check gemini plugin over model zoo Args: early_stop (bool, optional): Whether to stop when getting the first error. Defaults to True. """ is_support_meta = is_compatible_with_meta() if not is_support_meta and init_method == 'lazy': return from colossalai.utils.model.experimental import LazyInitContext passed_models = [] failed_info = {} # (model_name, error) pair for name, (model_fn, data_gen_fn, output_transform_fn, _) in model_zoo.items(): # These models lead to CUDA error if name in ('diffusers_auto_encoder_kl', 'diffusers_vq_model', 'diffusers_unet2d_model', 'timm_resmlp', 'timm_gmixer_12_224', 'timm_gmlp_b16_224', 'timm_mixer_b16_224', 'timm_convnext'): continue # These models are not compatible with gemini if name in [ 'diffusers_clip_vision_model', 'timm_resnet', 'timm_beit', 'timm_beitv2', 'timm_eca_nfnet', 'timm_efficientformer', 'timm_hrnet_w18_small', 'timm_nf_ecaresnet101', 'timm_nf_regnet_b0', 'timm_skresnet18', 'timm_wide_resnet50_2', 'timm_convit', 'timm_dm_nfnet', 'timm_swin_transformer', 'torchaudio_conformer', 'torchaudio_deepspeech', 'torchaudio_wavernn', 'torchaudio_tacotron', 'deepfm_interactionarch', 'deepfm_simpledeepfmnn', 'dlrm', 'dlrm_interactionarch', 'torchvision_googlenet', 'torchvision_inception_v3', 'torchvision_mobilenet_v3_small', 'torchvision_resnet18', 'torchvision_resnext50_32x4d', 'torchvision_wide_resnet50_2', 'torchvision_vit_b_16', 'torchvision_convnext_base', 'torchvision_swin_s', 'transformers_albert', 'transformers_albert_for_pretraining', 'transformers_bert', 'transformers_bert_for_pretraining', 'transformers_gpt_double_heads', 'torchaudio_hubert_base', 'torchaudio_wav2vec2_base', 'transformers_t5_for_conditional_generation', 'transformers_t5', 'transformers_t5_encoder_model' ]: continue if init_method == 'lazy' and name in [ 'timm_convmixer', 'timm_vision_transformer', 'timm_deit', 'timm_deit3', 'timm_inception_v3', 'timm_tnt_b_patch16_224', 'timm_rexnet', 'torchvision_densenet121', 'torchvision_efficientnet_b0', 'torchvision_mobilenet_v2', 'torchvision_mnasnet0_5', 'torchvision_regnet_x_16gf', 'torchvision_shufflenet_v2_x0_5', 'torchvision_efficientnet_v2_s' ]: continue try: if init_method == 'colo': ctx = ColoInitContext() elif init_method == 'lazy': ctx = LazyInitContext() else: ctx = nullcontext() plugin = GeminiPlugin(placement_policy='cuda', strict_ddp_mode=True, max_norm=1.0, initial_scale=2**5) booster = Booster(plugin=plugin) with ctx: model = model_fn() optimizer = HybridAdam(model.parameters(), lr=1e-3) criterion = lambda x: x.mean() data = data_gen_fn() data = { k: v.to('cuda') if torch.is_tensor(v) or 'Tensor' in v.__class__.__name__ else v for k, v in data.items() } model, optimizer, criterion, _, _ = booster.boost(model, optimizer, criterion) for n, p in model.named_parameters(): assert isinstance(p, ColoParameter), f'{n} is not a ColoParameter' output = model(**data) output = output_transform_fn(output) output_key = list(output.keys())[0] loss = criterion(output[output_key]) booster.backward(loss, optimizer) optimizer.step() passed_models.append(name) del booster, plugin, model, optimizer, criterion, data, output, loss except Exception as e: failed_info[name] = e if early_stop: raise e torch.cuda.empty_cache() if dist.get_rank() == 0: print(f'Init method: {init_method}') print(f'Passed models({len(passed_models)}): {passed_models}\n\n') print(f'Failed models({len(failed_info)}): {list(failed_info.keys())}\n\n') assert len(failed_info) == 0, '\n'.join([f'{k}: {v}' for k, v in failed_info.items()]) def check_dataloader_sharding(): plugin = GeminiPlugin() # create a custom dasetset with 0 to 10 dataset = torch.utils.data.TensorDataset(torch.arange(0, 10)) train_dataloader = plugin.prepare_train_dataloader(dataset, batch_size=2) # get the first batch of data batch = next(iter(train_dataloader))[0].cuda() is_rank_0 = dist.get_rank() == 0 if is_rank_0: batch_to_compare = batch.clone() else: batch_to_compare = batch # pass to the rank 1 value to rank 0 dist.broadcast(batch_to_compare, src=1) # compare on rank 0 if is_rank_0: assert not torch.equal(batch, batch_to_compare), 'Same number was found across ranks but expected it to be different' def run_dist(rank, world_size, port, early_stop: bool = True): # init dist env colossalai.launch(config=dict(), rank=rank, world_size=world_size, port=port, host='localhost') check_dataloader_sharding() check_gemini_plugin(early_stop=early_stop) @rerun_if_address_is_in_use() def test_gemini_plugin(early_stop: bool = True): spawn(run_dist, 2, early_stop=early_stop) if __name__ == '__main__': test_gemini_plugin(early_stop=False)