from typing import Callable import pytest import torch import torch.distributed as dist from torch.nn.parallel import DistributedDataParallel as DDP from torch.testing import assert_close import colossalai from colossalai.legacy.amp import convert_to_apex_amp from colossalai.nn.optimizer import HybridAdam from colossalai.testing import DummyDataloader, parameterize, rerun_if_address_is_in_use, spawn from colossalai.utils import set_seed from colossalai.utils.cuda import get_current_device from colossalai.zero import GeminiDDP, GeminiOptimizer from colossalai.zero.gemini.chunk import search_chunk_configuration from tests.kit.model_zoo import model_zoo, run_fwd, run_fwd_bwd PLACEMENT_CONFIGS = [ {"placement_policy": "static", "shard_param_frac": 0.0}, # zero2 {"placement_policy": "static", "shard_param_frac": 1.0}, # zero3 {"placement_policy": "static", "shard_param_frac": 0.5}, # zero3-half {"placement_policy": "auto"}, ] def check_param(model: GeminiDDP, torch_model: torch.nn.Module): zero_dict = model.state_dict(only_rank_0=False) torch_dict = torch_model.state_dict() for key, value in torch_dict.items(): # key is 'module.model.PARAMETER', so we truncate it key = key[7:] assert key in zero_dict, "{} not in ZeRO dictionary.".format(key) temp_zero_value = zero_dict[key].to(device=value.device, dtype=value.dtype) # debug_print([0], "max range: ", key, torch.max(torch.abs(value - temp_zero_value))) assert_close(value, temp_zero_value, rtol=1e-3, atol=4e-3) def multi_chunk_init(model: torch.nn.Module, placement_config: dict): world_size = dist.get_world_size() config_dict, *_ = search_chunk_configuration(model, search_range_m=1, search_interval=100) config_dict[world_size]["chunk_size"] = 5000 config_dict[world_size]["keep_gathered"] = False model = GeminiDDP(model, config_dict, pin_memory=True, **placement_config) return model def single_chunk_init(model: torch.nn.Module, placement_config: dict): model = GeminiDDP(model, chunk_init_device=get_current_device(), pin_memory=True, **placement_config) return model @parameterize("placement_config", PLACEMENT_CONFIGS) @parameterize("model_name", ["transformers_gpt_lm"]) @parameterize("model_init_func", [single_chunk_init, multi_chunk_init]) def exam_inference(placement_config: dict, model_name: str, model_init_func: Callable): set_seed(19360226) model_builder, data_gen_fn, output_transform_fn, *_ = next(iter(model_zoo.get_sub_registry(model_name).values())) torch_model = model_builder().cuda() amp_config = dict(opt_level="O2", keep_batchnorm_fp32=False, loss_scale=128) torch_optim = torch.optim.Adam(torch_model.parameters(), lr=1e-3) torch_model, torch_optim = convert_to_apex_amp(torch_model, torch_optim, amp_config) torch_model = DDP(torch_model, device_ids=[dist.get_rank()]) init_dev = get_current_device() model = model_builder().to(init_dev) for torch_p, p in zip(torch_model.parameters(), model.parameters()): p.data.copy_(torch_p.data) model = model_init_func(model, placement_config) optimizer = HybridAdam(model.parameters(), lr=1e-3) zero_optim = GeminiOptimizer(optimizer, model, initial_scale=128) model.eval() torch_model.eval() set_seed(dist.get_rank() * 3 + 128) train_dataloader = iter(DummyDataloader(data_gen_fn)) def train_iter(): data = next(train_dataloader) data = {k: v.cuda() if isinstance(v, torch.Tensor) else v for k, v in data.items()} zero_optim.zero_grad() torch_optim.zero_grad() torch_loss = run_fwd_bwd(torch_model, data, output_transform_fn, optimizer=torch_optim) loss = run_fwd_bwd(model, data, output_transform_fn, optimizer=zero_optim) assert_close(torch_loss.float(), loss.float(), rtol=1e-5, atol=1e-5) zero_optim.step() torch_optim.step() check_param(model, torch_model) def inference_iter(): data = next(train_dataloader) data = {k: v.cuda() if isinstance(v, torch.Tensor) else v for k, v in data.items()} with torch.no_grad(): torch_loss = run_fwd(torch_model, data, output_transform_fn) zero_loss = run_fwd(model, data, output_transform_fn) assert_close(torch_loss.float(), zero_loss.float(), rtol=1e-5, atol=1e-5) train_iter() inference_iter() train_iter() def run_dist(rank, world_size, port): config = {} colossalai.launch(config=config, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl") exam_inference() @pytest.mark.dist @pytest.mark.parametrize("world_size", [1, 4]) @rerun_if_address_is_in_use() def test_inference(world_size): spawn(run_dist, world_size) if __name__ == "__main__": test_inference(1)