import pytest import torch import colossalai from colossalai.logging import disable_existing_loggers from colossalai.testing import ( assert_hf_output_close, clear_cache_before_run, parameterize, rerun_if_address_is_in_use, spawn, ) from tests.kit.model_zoo import model_zoo from tests.test_shardformer.test_model._utils import build_model, check_grad, run_forward def check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn): # check forward org_output, org_loss, shard_output, shard_loss = run_forward( org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn ) assert_hf_output_close(org_output, shard_output, ignore_keys=["past_key_values"]) # do backward org_loss.backward() shard_loss.backward() assert torch.allclose( org_loss, shard_loss, atol=1e-5 ), f"shard model loss is not equal to orgin model loss\n{org_loss}\n{shard_loss}" # check grad blip2 = org_model sharded_blip2 = sharded_model # check grad col_layer_for_check = [ "vision_model.encoder.layers[0].self_attn.qkv", "qformer.encoder.layer[0].attention.attention.query", "language_model.model.decoder.layers[0].self_attn.k_proj", ] row_layer_for_check = [ "vision_model.encoder.layers[0].self_attn.projection", "qformer.encoder.layer[0].attention.output.dense", "language_model.model.decoder.layers[0].self_attn.out_proj", ] check_grad(blip2, sharded_blip2, col_layer_for_check, atol=1e-6, rtol=1e-5, dim=0, verbose=False) check_grad(blip2, sharded_blip2, row_layer_for_check, atol=1e-6, rtol=1e-5, dim=1, verbose=False) @parameterize("enable_fused_normalization", [True, False]) @parameterize("enable_tensor_parallelism", [True, False]) @parameterize("enable_flash_attention", [True, False]) @parameterize("enable_jit_fused", [True, False]) def run_blip2_test(enable_fused_normalization, enable_tensor_parallelism, enable_flash_attention, enable_jit_fused): sub_model_zoo = model_zoo.get_sub_registry("transformers_blip2") for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items(): org_model, sharded_model = build_model( model_fn, enable_fused_normalization, enable_tensor_parallelism, enable_flash_attention, enable_jit_fused ) check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn) torch.cuda.empty_cache() def check_blip2(rank, world_size, port): disable_existing_loggers() colossalai.launch(config={}, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl") run_blip2_test() @pytest.mark.dist @rerun_if_address_is_in_use() @clear_cache_before_run() def test_blip2(): spawn(check_blip2, 2) if __name__ == "__main__": test_blip2()