from contextlib import nullcontext import torch import torch.distributed as dist import torch.nn as nn from torch.testing import assert_close import colossalai from colossalai.lazy import LazyInitContext from colossalai.shardformer.layer import Embedding1D from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn @parameterize("lazy_init", [False, True]) def check_embedding_1d(lazy_init: bool): ctx = LazyInitContext() if lazy_init else nullcontext() embedding = nn.Embedding(32, 128).cuda() with ctx: embedding_copy = nn.Embedding(32, 128).cuda() embedding_1d = Embedding1D.from_native_module(embedding_copy, process_group=None) assert embedding_1d.weight.shape == torch.Size([32, 64]) assert embedding_1d.weight is embedding_copy.weight # ensure state dict is reversibly loadable embedding.load_state_dict(embedding_1d.state_dict()) embedding_1d.load_state_dict(embedding.state_dict()) # check computation correctness x = torch.randint(low=0, high=32, size=(4, 32)).cuda() out = embedding(x) gather_out = embedding_1d(x) assert_close(out, gather_out) # check backward correctness out.sum().backward() gather_out.sum().backward() rank = dist.get_rank() target_grad = torch.chunk(embedding.weight.grad, 2, dim=1)[rank] assert_close(target_grad, embedding_1d.weight.grad) def run_dist(rank, world_size, port): colossalai.launch(config={}, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl") check_embedding_1d() @rerun_if_address_is_in_use() def test_embedding_1d(): spawn(run_dist, nprocs=2) if __name__ == "__main__": test_embedding_1d()