# Examples ## Install requirements ```shell pip install -r requirements.txt ``` ## Train with dummy prompt data This script supports 3 strategies: - naive - ddp - colossalai It uses random generated prompt data. Naive strategy only support single GPU training: ```shell python train_dummy.py --strategy naive # display cli help python train_dummy.py -h ``` DDP strategy and ColossalAI strategy support multi GPUs training: ```shell # run DDP on 2 GPUs torchrun --standalone --nproc_per_node=2 train_dummy.py --strategy ddp # run ColossalAI on 2 GPUs torchrun --standalone --nproc_per_node=2 train_dummy.py --strategy colossalai ``` ## Train with real prompt data We use [awesome-chatgpt-prompts](https://huggingface.co/datasets/fka/awesome-chatgpt-prompts) as example dataset. It is a small dataset with hundreds of prompts. You should download `prompts.csv` first. This script also supports 3 strategies. ```shell # display cli help python train_dummy.py -h # run naive on 1 GPU python train_prompts.py prompts.csv --strategy naive # run DDP on 2 GPUs torchrun --standalone --nproc_per_node=2 train_prompts.py prompts.csv --strategy ddp # run ColossalAI on 2 GPUs torchrun --standalone --nproc_per_node=2 train_prompts.py prompts.csv --strategy colossalai ``` ## Train the reward model We use [rm-static](https://huggingface.co/datasets/Dahoas/rm-static) as dataset to train our reward model. It is a dataset of chosen & rejected response of the same prompt. You can download the dataset from huggingface automatically. Use these code to train your reward model. ```shell # Naive reward model training python train_reward_model.py --pretrain # if to use LoRA python train_reward_model.py --pretrain --lora_rank 16 ``` ## Support Model ### GPT - [ ] GPT2-S (s) - [ ] GPT2-M (m) - [ ] GPT2-L (l) - [ ] GPT2-XL (xl) - [ ] GPT2-4B (4b) - [ ] GPT2-6B (6b) - [ ] GPT2-8B (8b) - [ ] GPT2-10B (10b) - [ ] GPT2-12B (12b) - [ ] GPT2-15B (15b) - [ ] GPT2-18B (18b) - [ ] GPT2-20B (20b) - [ ] GPT2-24B (24b) - [ ] GPT2-28B (28b) - [ ] GPT2-32B (32b) - [ ] GPT2-36B (36b) - [ ] GPT2-40B (40b) - [ ] GPT3 (175b) ### BLOOM - [x] [BLOOM-560m](https://huggingface.co/bigscience/bloom-560m) - [x] [BLOOM-1b1](https://huggingface.co/bigscience/bloom-1b1) - [ ] [BLOOM-3b](https://huggingface.co/bigscience/bloom-3b) - [ ] [BLOOM-7b](https://huggingface.co/bigscience/bloomz-7b1) - [ ] BLOOM-175b ### OPT - [x] [OPT-125M](https://huggingface.co/facebook/opt-125m) - [x] [OPT-350M](https://huggingface.co/facebook/opt-350m) - [ ] [OPT-1.3B](https://huggingface.co/facebook/opt-1.3b) - [ ] [OPT-2.7B](https://huggingface.co/facebook/opt-2.7b) - [ ] [OPT-6.7B](https://huggingface.co/facebook/opt-6.7b) - [ ] [OPT-13B](https://huggingface.co/facebook/opt-13b) - [ ] [OPT-30B](https://huggingface.co/facebook/opt-30b)