#!/usr/bin/env python # -*- encoding: utf-8 -*- import torch from .base_grad_scaler import BaseGradScaler from typing import Optional __all__ = ['DynamicGradScaler'] class DynamicGradScaler(BaseGradScaler): def __init__(self, initial_scale: float = 2**16, growth_factor: float = 2, backoff_factor: float = 0.5, growth_interval: int = 1000, min_scale: Optional[float] = None, max_scale: Optional[float] = None, hysteresis: int = 2, verbose: bool = False): super().__init__(initial_scale, verbose) if min_scale: self._min_scale = torch.cuda.FloatTensor([min_scale]) else: self._min_scale = None if max_scale: self._max_scale = torch.cuda.FloatTensor([max_scale]) else: self._max_scale = None self._growth_factor = growth_factor self._backoff_factor = backoff_factor self._growth_interval = growth_interval self._growth_step = 0 self._hysteresis = hysteresis self._hysteresis_step = 0 self._sanity_checks() def _sanity_checks(self) -> None: if self._min_scale: assert self._min_scale > 0, 'The minimum gradient scale cannot be zero or negative' if self._max_scale: assert self._min_scale > 0, 'The maximum gradient scale cannot be zero or negative' assert self._growth_factor > 1, 'The growth factor cannot be equal or smaller than 1' assert self._backoff_factor < 1 and self._backoff_factor > 0, 'The backoff factor must be between 0 and 1' assert self._hysteresis >= 0, 'The hysteresis cannot be negative' def update(self, overflow: bool) -> None: if overflow: self._hysteresis_step += 1 self._growth_step = 0 if self._hysteresis_step >= self._hysteresis: self._backoff_scale() self.log(f"Overflow occurs, the loss scale is adjusted to {self.scale.item()}", ranks=[0]) else: self._growth_step += 1 if self._growth_step == self._growth_interval: self._growth_step = 0 self._hysteresis_step = 0 self._grow_scale() self.log( f"No overflow for consecutive {self._growth_interval} steps, " f"the loss scale is adjusted to {self.scale.item()}", ranks=[0]) def _backoff_scale(self) -> None: self._scale = self._scale * self._backoff_factor if self._min_scale: self._scale = torch.max(self._scale, self._min_scale) def _grow_scale(self) -> None: self._scale = self._scale * self._growth_factor if self._max_scale: self._scale = torch.min(self._scale, self._max_scale)