#!/usr/bin/env python # -*- encoding: utf-8 -*- import math import numbers from contextlib import nullcontext from typing import Callable, Tuple import torch import torch.nn.functional as F from colossalai.communication import broadcast from colossalai.context import ParallelMode, seed from colossalai.core import global_context as gpc from colossalai.nn import init as init from colossalai.registry import LAYERS from colossalai.utils import get_current_device from torch import Tensor, dtype from torch.nn.parameter import Parameter from ..base_layer import ParallelLayer from ..utils import divide, set_tensor_parallel_attribute_by_partition from ._operation import FusedLayerNormAffineFunction1D from ._utils import (gather_forward_split_backward, get_parallel_input, reduce_grad, reduce_input, set_parallel_input, split_forward_gather_backward) @LAYERS.register_module class Linear1D(torch.nn.Module): """ Linear layer for 1D parallelism :param in_features: size of each input sample :type in_features: int :param out_features: size of each output sample :type out_features: int :param bias: If set to ``False``, the layer will not learn an additive bias, defaults to True :type bias: bool, optional :param dtype: The dtype of parameters, defaults to None :type dtype: torch.dtype, optional :param skip_bias_add: If set to ``True``, it will skip bias add for linear layer, which is preserved for kernel fusion, defaults to False :type skip_bias_add: bool, optional :param weight_initializer: The intializer of weight, defaults to kaiming uniform initializer :type weight_initializer: typing.Callable, optional :param bias_initializer: The intializer of bias, defaults to xavier uniform initializer :type bias_initializer: typing.Callable, optional """ def __init__(self, in_features: int, out_features: int, bias: bool = True, dtype: torch.dtype = None, gather_output: bool = False, skip_bias_add: bool = False, weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)), bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1)): super().__init__() parallel_input = get_parallel_input() if not parallel_input: self.layer = Linear1D_Col(in_features, out_features, bias=bias, dtype=dtype, gather_output=gather_output, skip_bias_add=skip_bias_add, weight_initializer=weight_initializer, bias_initializer=bias_initializer) else: self.layer = Linear1D_Row(in_features, out_features, bias=bias, dtype=dtype, parallel_input=parallel_input, skip_bias_add=skip_bias_add, weight_initializer=weight_initializer, bias_initializer=bias_initializer) @property def weight(self): return self.layer.weight @property def bias(self): return self.layer.bias def forward(self, input_: Tensor) -> Tensor: return self.layer(input_) @LAYERS.register_module class Classifier1D(ParallelLayer): """RowLinear with given weight Classifier of 1D parallelism :param in_features: size of input features :type in_features: int :param num_classes: number of classes in the dataset :type num_classes: int :param weight: weight of the classifier, defaults to True :type weight: torch.nn.Parameter, optional :param bias: If set to ``False``, the layer will not learn an additive bias, defaults to ``True`` :type bias: bool, optional :param dtype: The dtype of parameters, defaults to None :type dtype: torch.dtype, optional :param weight_initializer: The intializer of weight, defaults to kaiming uniform initializer :type weight_initializer: typing.Callable, optional :param bias_initializer: The intializer of bias, defaults to xavier uniform initializer :type bias_initializer: typing.Callable, optional """ def __init__(self, in_features: int, num_classes: int, weight: Parameter = None, bias: bool = True, dtype: dtype = None, weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)), bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1)): super().__init__() self.in_features = in_features self.num_classes = num_classes self.parallel_input = get_parallel_input() # Divide the weight matrix along the last dimension. self.input_size_per_partition = divide(in_features, gpc.tensor_parallel_size) # Parameters. # Initialize weight. factory_kwargs = {'device': get_current_device(), 'dtype': dtype} if weight is not None: self.weight = weight self.has_weight = False else: self.weight = Parameter(torch.empty(self.num_classes, self.input_size_per_partition, **factory_kwargs)) self.has_weight = True if bias: self.bias = Parameter(torch.empty(self.num_classes, **factory_kwargs)) else: self.bias = None with seed(ParallelMode.TENSOR): self.reset_parameters(weight_initializer, bias_initializer) self._set_tensor_parallel_attributes() set_parallel_input(False) def reset_parameters(self, weight_initializer, bias_initializer) -> None: fan_in, fan_out = self.in_features, self.num_classes if self.has_weight: weight_initializer(self.weight, fan_in=fan_in, fan_out=fan_out) if self.bias is not None: bias_initializer(self.bias, fan_in=fan_in) broadcast(self.bias, gpc.get_ranks_in_group(ParallelMode.PARALLEL_1D)[0], ParallelMode.PARALLEL_1D) def _set_tensor_parallel_attributes(self): if self.has_weight: num_partition = gpc.get_world_size(ParallelMode.TENSOR) set_tensor_parallel_attribute_by_partition(self.weight, num_partition) def forward(self, input_: Tensor) -> Tensor: # Set up backprop all-reduce. if self.parallel_input: input_ = input_ else: input_ = split_forward_gather_backward(input_, ParallelMode.PARALLEL_1D, dim=-1) output_parallel = F.linear(input_, self.weight) output = reduce_input(output_parallel, ParallelMode.PARALLEL_1D) if self.bias is not None: output = output + self.bias return output @LAYERS.register_module class Linear1D_Col(ParallelLayer): """Linear layer with column parallelism. The linear layer is defined as :math:`Y = XA + b`. A is parallelized along its second dimension as :math:`A = [A_1, ..., A_p]`. :param in_features: first dimension of matrix A. :type in_features: int :param output_size: second dimension of matrix A. :type output_size: int :param bias: If set to ``False``, the layer will not learn an additive bias, defaults to ``True`` :type bias: bool, optional :param dtype: The dtype of parameters, defaults to None :type dtype: torch.dtype, optional :param gather_output: If true, call all-gether on output and make Y avaiable to all GPUs, otherwise, every GPU will have its output which is :math:`Y_i = XA_i`, defaults to False :type gather_output: bool, optional :param skip_bias_add: If set to ``True``, it will skip bias add for linear layer, which is preserved for kernel fusion, defaults to False :type skip_bias_add: bool, optional :param weight_initializer: The intializer of weight, defaults to kaiming uniform initializer :type weight_initializer: typing.Callable, optional :param bias_initializer: The intializer of bias, defaults to xavier uniform initializer :type bias_initializer: typing.Callable, optional """ def __init__(self, in_features: int, out_features: int, bias: bool = True, dtype: torch.dtype = None, gather_output: bool = False, skip_bias_add: bool = False, weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)), bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1)): super().__init__() # Keep input parameters self.in_features = in_features self.out_features = out_features self.gather_output = gather_output self.skip_bias_add = skip_bias_add if skip_bias_add and not bias: raise ValueError('cannot skip bias addition if bias is None') self.out_features_per_partition = divide(out_features, gpc.tensor_parallel_size) # Parameters. # Initialize weight. factory_kwargs = {'device': get_current_device(), 'dtype': dtype} self.weight = Parameter(torch.empty(self.out_features_per_partition, self.in_features, **factory_kwargs)) if bias: self.bias = Parameter(torch.empty(self.out_features_per_partition, **factory_kwargs)) else: self.bias = None with seed(ParallelMode.TENSOR): self.reset_parameters(weight_initializer, bias_initializer) self._set_tensor_parallel_attributes() set_parallel_input(True) def reset_parameters(self, weight_initializer, bias_initializer) -> None: fan_in, fan_out = self.in_features, self.out_features weight_initializer(self.weight, fan_in=fan_in, fan_out=fan_out) if self.bias is not None: bias_initializer(self.bias, fan_in=fan_in) def _set_tensor_parallel_attributes(self): num_partition = gpc.get_world_size(ParallelMode.TENSOR) set_tensor_parallel_attribute_by_partition(self.weight, num_partition) if self.bias is not None: set_tensor_parallel_attribute_by_partition(self.bias, num_partition) def forward(self, input_: Tensor) -> Tuple[Tensor, Tensor]: # Set up backprop all-reduce. input_parallel = reduce_grad(input_, ParallelMode.PARALLEL_1D) # Matrix multiply. bias = self.bias if not self.skip_bias_add else None output_parallel = F.linear(input_parallel, self.weight, bias) if self.gather_output: # All-gather across the partitions. output = gather_forward_split_backward(output_parallel, ParallelMode.PARALLEL_1D, dim=-1) else: output = output_parallel if self.skip_bias_add: return output, self.bias else: return output @LAYERS.register_module class Linear1D_Row(ParallelLayer): """ Linear layer with row parallelism :param in_features: size of each input sample :type in_features: int :param out_features: size of each output sample :type out_features: int :param bias: If set to ``False``, the layer will not learn an additive bias, defaults to ``True`` :type bias: bool, optional :param dtype: The dtype of parameters, defaults to None :type dtype: torch.dtype, optional :param parallel_input: If set to ``True``, it's assumed that the input is splitted, defaults to False :type parallel_input: bool, optional :param skip_bias_add: If set to ``True``, it will skip bias add for linear layer, which is preserved for kernel fusion, defaults to False :type skip_bias_add: bool, optional :param weight_initializer: The intializer of weight, defaults to kaiming uniform initializer :type weight_initializer: typing.Callable, optional :param bias_initializer: The intializer of bias, defaults to xavier uniform initializer :type bias_initializer: typing.Callable, optional """ def __init__(self, in_features: int, out_features: int, bias: bool = True, dtype: torch.dtype = None, parallel_input: bool = True, skip_bias_add: bool = False, weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)), bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1)): super().__init__() # Keep input parameters self.in_features = in_features self.out_features = out_features self.parallel_input = parallel_input self.skip_bias_add = skip_bias_add if skip_bias_add and not bias: raise ValueError('cannot skip bias addition if bias is None') # Divide the weight matrix along the last dimension. self.input_size_per_partition = divide(in_features, gpc.tensor_parallel_size) # Parameters. # Initialize weight. factory_kwargs = {'device': get_current_device(), 'dtype': dtype} self.weight = Parameter(torch.empty(self.out_features, self.input_size_per_partition, **factory_kwargs)) if bias: self.bias = Parameter(torch.empty(self.out_features, **factory_kwargs)) else: self.bias = None with seed(ParallelMode.TENSOR): self.reset_parameters(weight_initializer, bias_initializer) self._set_tensor_parallel_attributes() set_parallel_input(False) def reset_parameters(self, weight_initializer, bias_initializer) -> None: fan_in, fan_out = self.in_features, self.out_features weight_initializer(self.weight, fan_in=fan_in, fan_out=fan_out) if self.bias is not None: bias_initializer(self.bias, fan_in=fan_in) broadcast(self.bias, gpc.get_ranks_in_group(ParallelMode.PARALLEL_1D)[0], ParallelMode.PARALLEL_1D) def _set_tensor_parallel_attributes(self): num_partition = gpc.get_world_size(ParallelMode.TENSOR) set_tensor_parallel_attribute_by_partition(self.weight, num_partition) def forward(self, input_: Tensor) -> Tensor: # Set up backprop all-reduce. if self.parallel_input: input_ = input_ else: input_ = split_forward_gather_backward(input_, ParallelMode.PARALLEL_1D, dim=-1) output_parallel = F.linear(input_, self.weight) output = reduce_input(output_parallel, ParallelMode.PARALLEL_1D) if not self.skip_bias_add: output = output + self.bias return output else: return output, self.bias @LAYERS.register_module class MixedFusedLayerNorm1D(torch.nn.Module): r""" Layer Normalization for 1D parallelism :param normalized_shape: input shape from an expected input of size. :math:`[* \times \text{normalized_shape}[0] \times \text{normalized_shape}[1] \times \ldots \times \text{normalized_shape}[-1]]` If a single integer is used, it is treated as a singleton list, and this module will normalize over the last dimension which is expected to be of that specific size. :type normalized_shape: int :param eps: a value added to the denominator for numerical stability, defaults to 1e-05 :type eps: float, optional """ def __init__(self, normalized_shape, eps=1e-5): super(MixedFusedLayerNorm1D, self).__init__() if isinstance(normalized_shape, numbers.Integral): normalized_shape = (normalized_shape, ) self.normalized_shape = torch.Size(normalized_shape) self.eps = eps self.weight = Parameter(torch.Tensor(*normalized_shape)) self.bias = Parameter(torch.Tensor(*normalized_shape)) self.reset_parameters() def reset_parameters(self): init.ones_(self.weight) init.zeros_(self.bias) def forward(self, input): return FusedLayerNormAffineFunction1D.apply(input, self.weight, self.bias, self.normalized_shape, self.eps) @LAYERS.register_module class Embedding1D(ParallelLayer): """ Embedding for 1D parallelism :param num_embeddings: number of embeddings :type num_embeddings: int :param embedding_dim: dimension of embedding :type embedding_dim: int :param padding_idx: index of padding, defaults to None :type padding_idx: int, optional :param dtype: The dtype of parameters, defaults to None :type dtype: torch.dtype, optional :param weight_initializer: The intializer of weight, defaults to normal initializer :type weight_initializer: typing.Callable, optional :param args: Args used in F.embedding :param kwargs: Kwargs used in F.embedding """ def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: int = None, dtype: dtype = None, weight_initializer: Callable = init.normal_(), *args, **kwargs): super().__init__() self.num_embeddings = num_embeddings self.embed_dim = embedding_dim embed_dim_per_partition = divide(embedding_dim, gpc.tensor_parallel_size) self.padding_idx = padding_idx self.embed_args = args self.embed_kwargs = kwargs self.weight = Parameter( torch.empty((num_embeddings, embed_dim_per_partition), device=get_current_device(), dtype=dtype)) self.reset_parameters(weight_initializer) self._set_tensor_parallel_attributes() set_parallel_input(False) def _set_tensor_parallel_attributes(self): set_tensor_parallel_attribute_by_partition(self.weight, gpc.tensor_parallel_size) def reset_parameters(self, weight_initializer) -> None: with seed(ParallelMode.TENSOR): fan_in, fan_out = self.num_embeddings, self.embed_dim weight_initializer(self.weight, fan_in=fan_in, fan_out=fan_out) self._fill_padding_idx_with_zero() def _fill_padding_idx_with_zero(self) -> None: if self.padding_idx is not None: with torch.no_grad(): self.weight[self.padding_idx].fill_(0) def forward(self, input_: Tensor) -> Tensor: output_parallel = F.embedding(input_, self.weight, self.padding_idx, *self.embed_args, **self.embed_kwargs) output = gather_forward_split_backward(output_parallel, ParallelMode.PARALLEL_1D, dim=-1) return output @LAYERS.register_module class Dropout1D(ParallelLayer): """ Dropout layer of 1D parallelism :param p: dropout rate, defaults to 0.5 :type p: float, optional :param inplace: If set to ``True``, will do this operation in-place, defaults tp ``False`` :type inplace: bool, optional """ def __init__(self, p: float = 0.5, inplace: bool = False): super().__init__() self.parallel_input = get_parallel_input() self.p = p self.inplace = inplace def forward(self, input_: Tensor) -> Tensor: cm = nullcontext() if not self.parallel_input else seed(ParallelMode.TENSOR) with cm: output = F.dropout(input_, self.p, self.training, self.inplace) return output