from functools import partial import torch import torch.distributed as dist import torch.nn as nn from colossalai.logging import get_dist_logger from colossalai.utils import checkpoint from colossalai.zero.sharded_model import ShardedModelV2 LOGGER = get_dist_logger() CONFIG = dict(fp16=dict(mode=None,), zero=dict(level=3, verbose=False, offload_optimizer_config=dict(device='cpu', pin_memory=True, buffer_count=5, fast_init=False), offload_param_config=dict(device='cpu', pin_memory=True, buffer_count=5, buffer_size=1e8, max_in_cpu=1e9)), parallel=dict(pipeline=dict(size=1), tensor=dict(size=1, mode=None))) def run_fwd_bwd(model, data, label, criterion, enable_autocast=False): model.train() with torch.cuda.amp.autocast(enabled=enable_autocast): if criterion: y = model(data) loss = criterion(y, label) else: loss = model(data, label) loss = loss.float() if isinstance(model, ShardedModelV2): model.backward(loss) else: loss.backward() def checkpoint_wrapper(module, enable=True): if enable: module.forward = partial(checkpoint, module.forward) return module class Net(nn.Module): def __init__(self, checkpoint=False) -> None: super().__init__() self.fc1 = nn.Linear(5, 5) self.fc2 = nn.Linear(5, 5) self.fc3 = nn.Linear(5, 1) if checkpoint: self.fc1 = checkpoint_wrapper(self.fc1) self.layers = [self.fc1, self.fc2, self.fc1, self.fc2, self.fc3] def forward(self, x): for layer in self.layers: x = layer(x) return x def allclose(tensor_a: torch.Tensor, tensor_b: torch.Tensor, loose=False) -> bool: if loose: return torch.allclose(tensor_a, tensor_b, atol=1e-2, rtol=1e-3) return torch.allclose(tensor_a, tensor_b) def check_grads(model, zero_model, loose=False): for p, zero_p in zip(model.parameters(), zero_model.parameters()): zero_grad = zero_p.grad.clone().to(p.device) grad = p.grad.float() assert grad.dtype == zero_grad.dtype assert allclose(grad, zero_grad, loose=loose) def check_params(model, zero_model, loose=False): for p, zero_p in zip(model.parameters(), zero_model.parameters()): zero_p = zero_p.clone().to(p.device) assert p.dtype == zero_p.dtype assert allclose(p, zero_p, loose=loose) def check_grads_padding(model, zero_model, loose=False): rank = dist.get_rank() for p, zero_p in zip(model.parameters(), zero_model.parameters()): zero_grad = zero_p.grad.clone().to(p.device) chunks = torch.flatten(p.grad).chunk(dist.get_world_size()) if rank >= len(chunks): continue grad = chunks[rank].float() if zero_grad.size(0) > grad.size(0): zero_grad = zero_grad[:grad.size(0)] assert grad.dtype == zero_grad.dtype assert allclose(grad, zero_grad, loose=loose), f'diff: {grad - zero_grad}' def check_params_padding(model, zero_model, loose=False): rank = dist.get_rank() for p, zero_p in zip(model.parameters(), zero_model.parameters()): zero_p = zero_p.clone().to(p.device) chunks = torch.flatten(p).chunk(dist.get_world_size()) if rank >= len(chunks): continue p = chunks[rank] if zero_p.size(0) > p.size(0): zero_p = zero_p[:p.size(0)] assert p.dtype == zero_p.dtype assert allclose(p, zero_p, loose=loose) def check_sharded_params_padding(model, zero_model, loose=False): rank = dist.get_rank() for p, zero_p in zip(model.parameters(), zero_model.parameters()): zero_p = zero_p.col_attr.data.payload.to(p.device).float() chunks = torch.flatten(p).chunk(dist.get_world_size()) if rank >= len(chunks): continue p = chunks[rank].float() if zero_p.size(0) > p.size(0): zero_p = zero_p[:p.size(0)] assert p.dtype == zero_p.dtype assert allclose(p, zero_p, loose=loose), f'{p} vs {zero_p}'