import pytest import torch import torch.distributed as dist import colossalai from colossalai.nn.optimizer import HybridAdam from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn from colossalai.utils import set_seed from colossalai.zero import GeminiDDP, GeminiOptimizer from colossalai.zero.gemini.chunk import search_chunk_configuration from tests.components_to_test.registry import non_distributed_component_funcs PLACEMENT_CONFIGS = [ { 'placement_policy': 'static', 'shard_param_frac': 0.0, 'offload_optim_frac': 0.0 }, # zero2 { 'placement_policy': 'static', 'shard_param_frac': 0.0, 'offload_optim_frac': 1.0 }, # zero2-offload { 'placement_policy': 'static', 'shard_param_frac': 0.0, 'offload_optim_frac': 0.5 }, # zero2-offload-half { 'placement_policy': 'auto' } ] @parameterize('placement_config', PLACEMENT_CONFIGS) @parameterize('keep_gathered', [True, False]) def exam_zero_optim_state_dict(placement_config, keep_gathered): set_seed(431) get_components_func = non_distributed_component_funcs.get_callable('gpt2') model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func() model = model_builder() set_seed(451) world_size = torch.distributed.get_world_size() config_dict, *_ = search_chunk_configuration(model, search_range_m=1, search_interval=100) config_dict[world_size]['chunk_size'] = 5000 config_dict[world_size]['keep_gathered'] = keep_gathered model = GeminiDDP(model, config_dict, **placement_config, pin_memory=True) optimizer = HybridAdam(model.parameters()) optim = GeminiOptimizer(optimizer, model, initial_scale=32) # initialize the link between chunk16 and chunk32 set_seed(dist.get_rank() * 3 + 128) model.train() for i, (input_ids, label) in enumerate(train_dataloader): if i > 0: break optim.zero_grad() logits = model(input_ids) logits = logits.float() loss = criterion(logits, input_ids) optim.backward(loss) optim.step() optim_state_dict = optim.state_dict() optim.load_state_dict(optim_state_dict) new_state = optim.state_dict()['state'] org_state = optim_state_dict['state'] for k, v in org_state.items(): w = new_state[k] for n, m in v.items(): if isinstance(m, torch.Tensor): o = w[n] assert torch.equal(m, o) else: assert m == w[n] def run_dist(rank, world_size, port): config = {} colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') exam_zero_optim_state_dict() @pytest.mark.dist @pytest.mark.parametrize('world_size', [1, 4]) @rerun_if_address_is_in_use() def test_zero_optim(world_size): spawn(run_dist, world_size) if __name__ == '__main__': test_zero_optim(1)