import tempfile import pytest import torch from torch.optim import Adam from torchvision.models import resnet18 from colossalai.booster.plugin.gemini_plugin import GeminiCheckpointIO from colossalai.checkpoint_io import GeneralCheckpointIO from colossalai.testing import check_state_dict_equal, clear_cache_before_run, parameterize # ======== # Note: # 1. due to checkpoint IO can be quite slow if tested with all models, we will only test on resnet for now # 2. we will test on both sharded and unsharded checkpoints # 3. implement sharded checkpoint and test it # ======== @clear_cache_before_run() @parameterize('use_safetensors', [True, False]) def test_unsharded_checkpoint(use_safetensors: bool): # create a model and optimizer model = resnet18() optimizer = Adam(model.parameters(), lr=0.001) # create test data sample x = torch.randn(1, 3, 224, 224) # run fwd and bwd y = model(x) loss = y.sum() loss.backward() optimizer.step() # create a temp file for checkpoint if use_safetensors: suffix = ".safetensors" else: suffix = ".bin" model_ckpt_tempfile = tempfile.NamedTemporaryFile(suffix=suffix) optimizer_ckpt_tempfile = tempfile.NamedTemporaryFile() # save the model and optimizer ckpt_io = GeneralCheckpointIO() ckpt_io.save_model(model, model_ckpt_tempfile.name, use_safetensors=use_safetensors) ckpt_io.save_optimizer(optimizer, optimizer_ckpt_tempfile.name) # create new model new_model = resnet18() new_optimizer = Adam(new_model.parameters(), lr=0.001) # load the model and optimizer ckpt_io.load_model(new_model, model_ckpt_tempfile.name) ckpt_io.load_optimizer(new_optimizer, optimizer_ckpt_tempfile.name) # check for model and optimizer state dict recursively check_state_dict_equal(model.state_dict(), new_model.state_dict()) check_state_dict_equal(optimizer.state_dict(), new_optimizer.state_dict()) @pytest.mark.parametrize('use_safetensors', [True, False]) def test_sharded_model_checkpoint(use_safetensors: bool): # create a model and optimizer model = resnet18() optimizer = Adam(model.parameters(), lr=0.001) # create test data sample x = torch.randn(1, 3, 224, 224) # run fwd and bwd y = model(x) loss = y.sum() loss.backward() optimizer.step() # create a temp file for checkpoint if use_safetensors: suffix = ".safetensors" SAFE_WEIGHTS_INDEX_NAME = "model.safetensors.index.json" else: suffix = ".bin" WEIGHTS_INDEX_NAME = "model.bin.index.json" model_ckpt_dir = tempfile.TemporaryDirectory() optimizer_ckpt_tempfile = tempfile.NamedTemporaryFile() # save the model and optimizer ckpt_io = GeneralCheckpointIO() ckpt_io.save_model(model, model_ckpt_dir.name, True, True, "", 10, use_safetensors=use_safetensors) ckpt_io.save_optimizer(optimizer, optimizer_ckpt_tempfile.name, shard=False) # create new model new_model = resnet18() new_optimizer = Adam(new_model.parameters(), lr=0.001) ckpt_io.load_model(new_model, str(model_ckpt_dir.name), strict=True) ckpt_io.load_optimizer(new_optimizer, optimizer_ckpt_tempfile.name) # check for model and optimizer state dict recursively check_state_dict_equal(model.state_dict(), new_model.state_dict()) check_state_dict_equal(optimizer.state_dict(), new_optimizer.state_dict()) def test_sharded_optimizer_checkpoint(): # create a model and optimizer model = resnet18() optimizer = Adam(model.parameters(), lr=0.001) # create test data sample x = torch.randn(1, 3, 224, 224) # run fwd and bwd y = model(x) loss = y.sum() loss.backward() optimizer.step() # create temp directories for checkpoint model_ckpt_dir = tempfile.TemporaryDirectory() optimizer_ckpt_dir = tempfile.TemporaryDirectory() # save the model and optimizer ckpt_io = GeneralCheckpointIO() ckpt_io.save_model(model, model_ckpt_dir.name, True, True, "", 10, use_safetensors=False) ckpt_io.save_optimizer(optimizer, optimizer_ckpt_dir.name, shard=True, size_per_shard=10) # create new model new_model = resnet18() new_optimizer = Adam(new_model.parameters(), lr=0.001) ckpt_io.load_model(new_model, str(model_ckpt_dir.name), strict=True) ckpt_io.load_optimizer(new_optimizer, str(optimizer_ckpt_dir.name)) # check for model and optimizer state dict recursively check_state_dict_equal(model.state_dict(), new_model.state_dict()) check_state_dict_equal(optimizer.state_dict(), new_optimizer.state_dict()) # continue running fwd and bwd for _ in range(5): y = new_model(x) loss = y.sum() loss.backward() new_optimizer.step() # save the newly got optimizer ckpt_io.save_model(new_model, model_ckpt_dir.name, True, True, "", 10, use_safetensors=False) ckpt_io.save_optimizer(new_optimizer, optimizer_ckpt_dir.name, shard=True, size_per_shard=10) # create another new model new_new_model = resnet18() new_new_optimizer = Adam(new_new_model.parameters(), lr=0.001) ckpt_io.load_model(new_new_model, str(model_ckpt_dir.name), strict=True) ckpt_io.load_optimizer(new_new_optimizer, str(optimizer_ckpt_dir.name)) # check for model and optimizer state dict recursively check_state_dict_equal(new_model.state_dict(), new_new_model.state_dict()) check_state_dict_equal(new_optimizer.state_dict(), new_new_optimizer.state_dict()) def test_sharded_optimizer_multiple_param_groups(): # create a model and optimizer model = resnet18() optimizer = Adam([{ 'params': model.layer1.parameters() }, { 'params': model.layer2.parameters(), 'lr': 0.002 }], lr=0.001) # create test data sample x = torch.randn(1, 3, 224, 224) # run fwd and bwd y = model(x) loss = y.sum() loss.backward() optimizer.step() # create temp directories for checkpoint model_ckpt_dir = tempfile.TemporaryDirectory() optimizer_ckpt_dir = tempfile.TemporaryDirectory() # save the model and optimizer ckpt_io = GeneralCheckpointIO() ckpt_io.save_model(model, model_ckpt_dir.name, True, True, "", 10, use_safetensors=False) ckpt_io.save_optimizer(optimizer, optimizer_ckpt_dir.name, shard=True, size_per_shard=10) # create new model new_model = resnet18() new_optimizer = Adam([{ 'params': new_model.layer1.parameters() }, { 'params': new_model.layer2.parameters(), 'lr': 0.002 }], lr=0.001) ckpt_io.load_model(new_model, str(model_ckpt_dir.name), strict=True) ckpt_io.load_optimizer(new_optimizer, str(optimizer_ckpt_dir.name)) # check for model and optimizer state dict recursively check_state_dict_equal(model.state_dict(), new_model.state_dict()) check_state_dict_equal(optimizer.state_dict(), new_optimizer.state_dict())