import argparse import os import time import torch from transformers import BloomForCausalLM, BloomTokenizerFast import colossalai from colossalai.inference.tensor_parallel.engine import TPInferEngine from colossalai.logging import disable_existing_loggers from colossalai.shardformer import ShardConfig from colossalai.testing import clear_cache_before_run, rerun_if_address_is_in_use, spawn os.environ['TRANSFORMERS_NO_ADVISORY_WARNINGS'] = 'true' def print_perf_stats(latency_set, config, bs, warmup=3): # trim warmup queries latency_set = list(latency_set) latency_set = latency_set[warmup:] count = len(latency_set) if count > 0: latency_set.sort() avg = sum(latency_set) / count num_layers = getattr(config, "num_layers", config.num_hidden_layers) num_parameters = num_layers * config.hidden_size * config.hidden_size * 12 num_bytes = 2 # float16 print("Avg Per Token Latency: {0:8.2f} ms".format(avg * 1000)) print("Avg BW: {0:8.2f} GB/s".format(1 / avg * num_parameters * num_bytes / 1e9)) print("Avg flops: {0:8.2f} TFlops/s".format(1 / avg * num_parameters * num_bytes * bs / 1e12)) print("Avg Throughput: tokens/s: {}".format((1000 / (avg * 1000)) * bs)) def bench_bloom(args): model_path = args.path max_batch_size = args.batch_size max_input_len = args.input_len max_output_len = args.output_len tokenizer = BloomTokenizerFast.from_pretrained(model_path) tokenizer.pad_token = tokenizer.eos_token model = BloomForCausalLM.from_pretrained(model_path, pad_token_id=tokenizer.eos_token_id) model = model.half() # init TPInferEngine and shard the original model # To benchmark torch original, comment out the line of optimizing model shard_config = ShardConfig(enable_tensor_parallelism=True if args.tp_size > 1 else False, inference_only=True) infer_engine = TPInferEngine(model, shard_config, max_batch_size, max_input_len, max_output_len) # prepare data for generation generate_kwargs = dict(max_new_tokens=max_output_len, do_sample=False) input_tokens = { "input_ids": torch.randint(10, 1000, (max_batch_size, max_input_len)), "attention_mask": torch.ones((max_batch_size, max_input_len)) } for t in input_tokens: if torch.is_tensor(input_tokens[t]): input_tokens[t] = input_tokens[t].to(torch.cuda.current_device()) print(f" input_tokens[{t}].shape: {input_tokens[t].shape}") iters = 10 times = [] for i in range(iters): torch.cuda.synchronize() start = time.time() outputs = infer_engine.generate(input_tokens, **generate_kwargs) torch.cuda.synchronize() end = time.time() out_len = outputs.shape[1] print(f" iter {i}: out len {str(out_len)}, generation time {str(end - start)} s") times.append((end - start) / (out_len - max_input_len)) print_perf_stats(times, model.config, max_batch_size) def check_bloom(rank, world_size, port, args): disable_existing_loggers() colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') bench_bloom(args) @rerun_if_address_is_in_use() @clear_cache_before_run() def test_bloom(args): spawn(check_bloom, args.tp_size, args=args) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('-p', '--path', type=str, help='Model path', required=True) parser.add_argument('-tp', '--tp_size', type=int, default=1, help='Tensor parallel size') parser.add_argument('-b', '--batch_size', type=int, default=16, help='Maximum batch size') parser.add_argument('--input_len', type=int, default=1024, help='Maximum input length') parser.add_argument('--output_len', type=int, default=128, help='Maximum output length') args = parser.parse_args() test_bloom(args)