from copy import deepcopy import pytest import torch import torch.distributed as dist from torch.nn.parallel import DistributedDataParallel as DDP from transformers.models.mixtral.configuration_mixtral import MixtralConfig from transformers.models.mixtral.modeling_mixtral import MixtralSparseMoeBlock import colossalai from colossalai.booster.plugin.moe_hybrid_parallel_plugin import MoeHybridParallelPlugin from colossalai.shardformer.modeling.mixtral import EPMixtralSparseMoeBlock from colossalai.tensor.moe_tensor.api import is_moe_tensor from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn from colossalai.testing.random import seed_all from colossalai.zero import LowLevelZeroOptimizer from tests.test_moe.moe_utils import loose_close tokens, n_experts = 7, 4 hidden_size = 8 top_k = 2 def split_grad(grad, world_size): with torch.no_grad(): grad = grad.clone().detach().flatten() padding_size = (world_size - grad.numel() % world_size) % world_size if padding_size > 0: grad = torch.nn.functional.pad(grad, [0, padding_size]) splited_grad = grad.split(grad.numel() // world_size) return splited_grad @parameterize("stage", [1, 2]) @parameterize("ep_size", [1, 2, 4]) def run_zero_with_original_model(stage: int, ep_size: int): dtype = torch.float16 rank = torch.distributed.get_rank() torch.cuda.set_device(dist.get_rank()) plugin = MoeHybridParallelPlugin( tp_size=1, pp_size=1, ep_size=ep_size, ) seed_all(10086) config = MixtralConfig( hidden_size=hidden_size, intermediate_size=hidden_size * 2, num_local_experts=n_experts, num_experts_per_tok=top_k, ) orig_model = MixtralSparseMoeBlock(config).to(dtype).cuda() ori_model = DDP( orig_model.cuda(), process_group=plugin.dp_group, find_unused_parameters=True, # important for torch ddp, not all experts are routed ).cuda() zero_model = deepcopy(orig_model).to(dtype) zero_model = EPMixtralSparseMoeBlock.from_native_module(zero_model, ep_group=plugin.ep_group) zero_optimizer = torch.optim.SGD(zero_model.parameters(), lr=1) pg_param_list = {plugin.dp_group: [], plugin.moe_dp_group: []} for p in zero_model.parameters(): if is_moe_tensor(p): pg_param_list[plugin.moe_dp_group].append(p) else: pg_param_list[plugin.dp_group].append(p) zero_optimizer = LowLevelZeroOptimizer( zero_optimizer, pg_to_param_list=pg_param_list, master_weights=False, initial_scale=1, overlap_communication=True, partition_grad=stage == 2, ) ori_optimizer = torch.optim.SGD(ori_model.parameters(), lr=1) # create seed_all(1453 + rank) for _ in range(2): # zero-dp forward input_data = torch.rand(1, tokens, hidden_size, requires_grad=True).cuda() zero_output, _ = zero_model(input_data.to(dtype)) # torch-ddp forward ori_output, _ = ori_model(input_data.to(dtype)) loose_close(zero_output, ori_output, dtype=dtype) # zero-dp backward zero_optimizer.backward(zero_output.mean().float()) # torch-ddp backward ori_output.mean().backward() # check grad name_to_p = {n: p for n, p in ori_model.module.named_parameters()} for n, p in zero_model.named_parameters(): zero_grad = zero_optimizer.get_param_grad(p) if name_to_p[n].grad is None: assert zero_grad is None continue loose_close(zero_grad, name_to_p[n].grad, dtype=dtype) # zero-dp step zero_optimizer.step() # original model step ori_optimizer.step() # check updated param for n, p in zero_model.named_parameters(): loose_close(p.data, name_to_p[n].data, dtype=dtype) print(f"{dist.get_rank()} test passed") def run_dist(rank, world_size, port): colossalai.launch(rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl") run_zero_with_original_model() @pytest.mark.dist @pytest.mark.parametrize("world_size", [4]) @rerun_if_address_is_in_use() def test_moe_zero_model(world_size): spawn(run_dist, world_size) if __name__ == "__main__": test_moe_zero_model(world_size=4)