import torch from colossalai.tensor.op_wrapper import colo_op_impl from colossalai.tensor import ComputePattern, ComputePattern, ComputeSpec, ColoTensor from colossalai.tensor import distspec, ColoTensorSpec, ShardSpec, ReplicaSpec from ._utils import GeneralTensor, Number, convert_to_colo_tensor from ._utils import reduce_input, reduce_grad def colo_addmm_1Drow(input_tensor: ColoTensor, mat1: ColoTensor, mat2: ColoTensor, beta: Number, alpha: Number) -> ColoTensor: # mat1:S[1] x mat2:S[0] = Output:P # beta * input + alpha * All-Reduce(Output) = res mat1 = mat1.redistribute(ShardSpec([-1], [mat2.get_tp_world_size()]), mat2.get_process_group()) # Output:P partial_output = torch.mm(mat1, mat2) # Reduce(Output) output = reduce_input(partial_output, mat2.get_process_group()) # input assert not input_tensor.has_compute_spec(), 'Invalid input spec for 1Drow addmm op' output = beta * input_tensor + alpha * output output = ColoTensor.from_torch_tensor(output, spec=ColoTensorSpec(input_tensor.get_process_group())) return output def colo_addmm_1Dcol(input_tensor: ColoTensor, mat1: ColoTensor, mat2: ColoTensor, beta: Number, alpha: Number) -> ColoTensor: # mat1:B x mat2:S[1] + input:S[1] = Output:S[1] compute_spec = mat2.compute_spec mat1 = mat1.redistribute(ReplicaSpec()) mat1 = reduce_grad(mat1, mat1.get_process_group()) output_parallel = torch.addmm(input_tensor, mat1, mat2, beta=beta, alpha=alpha) output_spec = ColoTensorSpec(input_tensor.get_process_group(), ShardSpec([-1], [mat2.get_tp_world_size()]), ComputeSpec(ComputePattern.TP1D)) output = ColoTensor.from_torch_tensor(output_parallel, spec=output_spec) if compute_spec.output_replicate: return output.to_replicate() else: return output def colo_addmm_1d(mode: str, input_tensor: ColoTensor, mat1: ColoTensor, mat2: ColoTensor, beta: Number, alpha: Number) -> ColoTensor: assert mode in ('row', 'col') funcs = {'row': colo_addmm_1Drow, 'col': colo_addmm_1Dcol} return funcs[mode](input_tensor, mat1, mat2, beta, alpha) @colo_op_impl(torch.addmm) def colo_addmm(input_tensor: GeneralTensor, mat1: ColoTensor, mat2: ColoTensor, beta: Number = 1, alpha: Number = 1, **kargs) -> ColoTensor: """Handles ``__torch_function__`` dispatch for ``torch.nn.functional.linear``. This method computes a linear. """ # At least one of the tensor should be ColoTensor assert isinstance(mat2, ColoTensor) input_tensor = convert_to_colo_tensor(input_tensor, mat2.get_process_group()) mat1 = convert_to_colo_tensor(mat1, mat2.get_process_group()) # Add communication logic before and after linear call. ret_tensor = None if not mat2.has_compute_spec(): # No Model Parallel Applied assert mat2.is_replicate(), 'Invalid mat2 spec for native addmm op' assert input_tensor.is_replicate(), 'Invalid input spec for native addmm op' ret_tensor = ColoTensor.from_torch_tensor( tensor=torch.addmm(input_tensor, mat1, mat2, beta=beta, alpha=alpha, **kargs), spec=ColoTensorSpec(mat2.get_process_group())) elif mat2.has_compute_pattern(ComputePattern.TP1D): # Single Model Parallel Applied if mat2.is_shard_1drow() and input_tensor.is_replicate(): mode = 'row' elif mat2.is_shard_1dcol() and (input_tensor.is_shard_1dcol() or input_tensor.is_shard_1drow()): mode = 'col' else: raise NotImplementedError ret_tensor = colo_addmm_1d(mode, input_tensor, mat1, mat2, beta, alpha) else: raise NotImplementedError return ret_tensor