import torch import torch.nn as nn import torch.nn.functional as F from colossalai.nn import CheckpointModule from .registry import non_distributed_component_funcs from .utils.dummy_data_generator import DummyDataGenerator class HangingParamModule(CheckpointModule): """ Hanging Parameter: a parameter dose not belong to a leaf Module. It has subordinate nn.modules and a nn.Parameter. """ def __init__(self, checkpoint=False) -> None: super().__init__(checkpoint=checkpoint) self.proj1 = nn.Linear(4, 8) self.weight = nn.Parameter(torch.randn(8, 8)) self.proj2 = nn.Linear(8, 4) def forward(self, x): x = self.proj1(x) x = F.linear(x, self.weight) x = self.proj2(x) return x class DummyDataLoader(DummyDataGenerator): def generate(self): data = torch.rand(16, 4) label = torch.randint(low=0, high=2, size=(16,)) return data, label @non_distributed_component_funcs.register(name='hanging_param_model') def get_training_components(): def model_builder(checkpoint=False): return HangingParamModule(checkpoint) trainloader = DummyDataLoader() testloader = DummyDataLoader() criterion = torch.nn.CrossEntropyLoss() from colossalai.nn.optimizer import HybridAdam return model_builder, trainloader, testloader, HybridAdam, criterion