from enum import Enum from typing import Optional, Union import torch from .gemini_context import GeminiMemoryManager def sizeof_tensor(tensor: torch.Tensor): return tensor.numel() * tensor.element_size() class TensorState(Enum): FREE = 0 HOLD = 1 HOLD_AFTER_FWD = 2 HOLD_AFTER_BWD = 3 COMPUTE = 4 class StatefulTensor(object): """A Structure stores a Torch Tensor and labeled states. Inspired from the paper: PatrickStar: Parallel Training of Pre-trained Models via Chunk-based Memory Management https://arxiv.org/abs/2108.05818 """ # Global Stateful Tensor Manager GST_MGR = GeminiMemoryManager(TensorState) def __init__(self, maybe_tensor: Optional[torch.Tensor], state: Optional[TensorState] = TensorState.HOLD) -> None: self._state = state self._payload = None self._payload_size = 0 # byte size of current payload StatefulTensor.GST_MGR.register_new_instance() if self._state == TensorState.FREE: # when the state is free, payload should be None assert maybe_tensor is None, f"payload has to None if state is {self._state}" else: # otherwise, payload should not be None assert maybe_tensor is not None, f"payload can't be None if state is {self._state}" self._payload = maybe_tensor self._payload_size = sizeof_tensor(maybe_tensor) self.__trans_state_update(TensorState.FREE, state) def data_ptr(self): if self._payload is None: return 0 # if a tensor has no storage, 0 should be returned return self._payload.data_ptr() def set_null(self) -> None: # notice that free stateful tensor do not need to become null again if self.state != TensorState.FREE: self.__trans_state_update(self.state, TensorState.FREE) self.__release() def is_null(self) -> bool: if self.state == TensorState.FREE: # check sanity here assert self.payload is None return True return False def trans_state(self, state: TensorState) -> None: if self.state == TensorState.FREE: # free stateful tensor can't change state assert state == TensorState.FREE, "Free stateful tensor can't change to other states" return self.__trans_state_update(self.state, state) if state == TensorState.FREE: self.__release() else: self._state = state def move_to(self, device: Union[torch.device, int]): assert self.state is not TensorState.FREE, "Can't move free stateful tensor" if not isinstance(device, torch.device): to_device = torch.device('cuda', device) else: to_device = device from_device_type = self.device.type if from_device_type == to_device.type: # from device == to device return # update manager's information self.__trans_device_update(from_device_type, to_device.type) self.payload.data = self.payload.data.to(to_device) def payload_copy(self, tensor) -> None: self._payload.view(-1).copy_(tensor.view(-1)) def payload_reset(self, tensor) -> None: assert tensor is not None, "Can't reset None for stateful tensors, please use set_null() instead" if self.payload is not None: # release old payload self.__trans_state_update(self.state, TensorState.FREE) else: # otherwise, set the state to HOLD for new payload self._state = TensorState.HOLD del self._payload self._payload = tensor self._payload_size = sizeof_tensor(tensor) # record new payload self.__trans_state_update(TensorState.FREE, self.state) def payload_relay(self, rhs): # relay the payload of rhs to current stateful tensor # can't support null relay right now assert not rhs.is_null() # now this function only support stateful tensor that has zero-length payload # because it doesn't require memory manager updating # you can extend this function by yourself assert self.payload_size == 0 self._payload = rhs.payload self._payload_size = rhs.payload_size self._state = TensorState.HOLD self.__trans_state_update(rhs.state, TensorState.HOLD) rhs.__release() @property def payload(self) -> Optional[torch.Tensor]: return self._payload @property def payload_size(self) -> int: return self._payload_size @property def state(self) -> TensorState: return self._state @property def device(self) -> torch.device: return self._payload.device @property def dtype(self) -> torch.dtype: return self._payload.dtype @property def shape(self): return self._payload.shape def to(self, device: torch.device): raise RuntimeError("Use move_to(...) instead of call .to() on StatefulTensor") def to_(self, device: torch.device): raise RuntimeError("Use move_to(...) instead of call .to_() on StatefulTensor") def __release(self): # release current payload # shouldn't be visible to users self._state = TensorState.FREE self._payload = None self._payload_size = 0 def __trans_state_update(self, from_state: TensorState, to_state: TensorState): """Update global manager when changing the state of a tensor """ manager = StatefulTensor.GST_MGR size = self.payload_size device_type = self.device.type if from_state != TensorState.FREE: manager.state_mem[device_type][from_state] -= size else: # when from_state is FREE, the tensor is new to manager # we should add its memory manager.total_mem[device_type] += size if to_state != TensorState.FREE: manager.state_mem[device_type][to_state] += size else: # when to_state is FREE, the tensor will be deleted soon # we should sub its memory manager.total_mem[device_type] -= size def __trans_device_update(self, from_type: str, to_type: str): """Update global manager when changing the device of a tensor """ manager = StatefulTensor.GST_MGR size = self.payload_size state = self.state # update aggregated information manager.total_mem[from_type] -= size manager.total_mem[to_type] += size # update the information of each state manager.state_mem[from_type][state] -= size manager.state_mem[to_type][state] += size def __del__(self): self.set_null() StatefulTensor.GST_MGR.delete_instance() del self