import os import random import numpy as np import torch import torch.distributed as dist from colossalai.core import global_context as gpc from colossalai.context import ParallelMode def set_seed(seed): random.seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.backends.cudnn.deterministic = True def check_equal(A, B): assert torch.allclose(A, B, rtol=1e-3, atol=1e-1) == True def replace_parameter_add_grad(layer, weight=None, bias=None): if weight is not None: delattr(layer, 'weight') setattr(layer, 'weight', weight) layer.weight.requires_grad = True if bias is not None: delattr(layer, 'bias') setattr(layer, 'bias', bias) layer.bias.requires_grad = True def broadcast_tensor_chunk(tensor, chunk_size=1, local_rank=0): dist.broadcast(tensor, src=0) tensor_chunk = torch.chunk(tensor, chunk_size, dim=-1)[local_rank] return tensor_chunk.clone() def tensor_equal(A, B): return torch.allclose(A, B, rtol=1e-3, atol=1e-1) def tensor_shard_equal(tensor: torch.Tensor, shard: torch.Tensor): assert tensor.ndim == shard.ndim if tensor.shape == shard.shape: return tensor_equal(tensor, shard) else: dims_not_eq = torch.nonzero(torch.tensor(tensor.shape) != torch.tensor(shard.shape)) if dims_not_eq.numel() == 1: # 1D shard dim = dims_not_eq.item() world_size = gpc.get_world_size(ParallelMode.PARALLEL_1D) rank = gpc.get_local_rank(ParallelMode.PARALLEL_1D) return tensor_equal(tensor.chunk(world_size, dim)[rank], shard) else: raise NotImplementedError