import torch import torch.distributed as dist from colossalai.tensor import ColoTensor, ColoTensorSpec from colossalai.tensor.distspec import _DistSpec, DistPlacementPattern def robust_broadcast(tensor): with torch.no_grad(): is_cpu_ten = tensor.device.type == 'cpu' if is_cpu_ten: b_data = tensor.cuda() else: b_data = tensor dist.broadcast(b_data, 0) if is_cpu_ten: tensor.copy_(b_data) def gather_tensor(colo_tensor: ColoTensor) -> None: """Make colo_tensor replicated when the rank is 0 """ if not colo_tensor.is_replicate(): pg = colo_tensor.get_process_group() # for the group which contains rank 0 if pg.dp_local_rank() == 0: old_dist_spec = colo_tensor.dist_spec colo_tensor.to_replicate_() if dist.get_rank() != 0: colo_tensor.set_dist_spec(old_dist_spec) # synchronize all processes for unexpected problems dist.barrier() if dist.get_rank() == 0: setattr(colo_tensor, 'save_ready', True) # set saving signitrue def scatter_tensor(colo_tensor: ColoTensor, dist_spec: _DistSpec) -> None: """Reversal operation of `gather_tensor`. """ if dist_spec.placement == DistPlacementPattern.REPLICATE: robust_broadcast(colo_tensor.data) else: global_size = colo_tensor.size_global() if dist.get_rank() == 0: entire_data = colo_tensor.data else: entire_data = torch.empty(global_size, device=colo_tensor.device) robust_broadcast(entire_data) if dist.get_rank() == 0: colo_tensor.set_dist_spec(dist_spec) else: rep_tensor = ColoTensor( entire_data, ColoTensorSpec(pg=colo_tensor.get_process_group(), compute_attr=colo_tensor.compute_spec)) rep_tensor.set_dist_spec(dist_spec) with torch.no_grad(): colo_tensor.data.copy_(rep_tensor.data) # synchronize all processes for unexpected problems dist.barrier()