import time from argparse import ArgumentParser from functools import partial import matplotlib.pyplot as plt import torch import torch.multiprocessing as mp import torchvision.models as tm from bench_utils import bench_rotor import colossalai from colossalai.auto_parallel.checkpoint import CheckpointSolverRotor from colossalai.fx import metainfo_trace, symbolic_trace from colossalai.utils import free_port def data_gen(batch_size, shape, device='cuda'): """ Generate random data for benchmarking """ data = torch.empty(batch_size, *shape, device=device) label = torch.empty(batch_size, dtype=torch.long, device=device).random_(1000) return (data,), label def _resnet50_benchmark(rank, world_size, port, batch_size, num_steps, sample_points, free_memory, start_factor): colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') model = tm.resnet50() # trace and benchmark gm = symbolic_trace(model) gm = metainfo_trace(gm, torch.empty(batch_size, 3, 224, 224, device='meta')) budgets, peak_hist, step_hist = bench_rotor(gm, torch.nn.CrossEntropyLoss(), partial(data_gen, batch_size=batch_size, shape=(3, 224, 224)), num_steps=num_steps, sample_points=sample_points, free_memory=free_memory, start_factor=start_factor) # print summary print("==============test summary==============") for budget, peak, step in zip(budgets, peak_hist, step_hist): print(f'memory budget: {budget:.3f} MB, peak memory: {peak:.3f} MB, step time: {step:.3f} MS') # plot valid results fig, axs = plt.subplots(1, 2, figsize=(16, 8)) valid_idx = step_hist.index(next(step for step in step_hist if step != float("inf"))) # plot peak memory vs. budget memory axs[0].plot(budgets[valid_idx:], peak_hist[valid_idx:]) axs[0].plot([budgets[valid_idx], budgets[-1]], [budgets[valid_idx], budgets[-1]], linestyle='--') axs[0].set_xlabel("Budget Memory (MB)") axs[0].set_ylabel("Peak Memory (MB)") axs[0].set_title("Peak Memory vs. Budget Memory") # plot relative step time vs. budget memory axs[1].plot(peak_hist[valid_idx:], [step_time / step_hist[-1] for step_time in step_hist[valid_idx:]]) axs[1].plot([peak_hist[valid_idx], peak_hist[-1]], [1.0, 1.0], linestyle='--') axs[1].set_xlabel("Peak Memory (MB)") axs[1].set_ylabel("Relative Step Time") axs[1].set_title("Step Time vs. Peak Memory") axs[1].set_ylim(0.8, 1.5) # save plot fig.savefig("resnet50_benchmark.png") def resnet50_benchmark(batch_size, num_steps, sample_points, free_memory, start_factor): world_size = 1 run_func_module = partial(_resnet50_benchmark, world_size=world_size, port=free_port(), batch_size=batch_size, num_steps=num_steps, sample_points=sample_points, free_memory=free_memory, start_factor=start_factor) mp.spawn(run_func_module, nprocs=world_size) if __name__ == "__main__": parser = ArgumentParser("ResNet50 Auto Activation Benchmark") parser.add_argument("--batch_size", type=int, default=128, help="batch size for benchmark, default 128") parser.add_argument("--num_steps", type=int, default=5, help="number of test steps for benchmark, default 5") parser.add_argument( "--sample_points", type=int, default=15, help= "number of sample points for benchmark from start memory budget to maximum memory budget (free_memory), default 15" ) parser.add_argument("--free_memory", type=int, default=11000, help="maximum memory budget in MB for benchmark, default 11000 MB") parser.add_argument( "--start_factor", type=int, default=4, help= "start memory budget factor for benchmark, the start memory budget will be free_memory / start_factor, default 4" ) args = parser.parse_args() resnet50_benchmark(args.batch_size, args.num_steps, args.sample_points, args.free_memory * 1024**2, args.start_factor)