from model import GPT2_small_pipeline_hybrid from colossalai.nn.optimizer import HybridAdam from colossalai.zero.shard_utils import TensorShardStrategy BATCH_SIZE = 8 NUM_EPOCHS = 10 SEQ_LEN = 1024 NUM_MICRO_BATCHES = 4 HIDDEN_SIZE = 768 TENSOR_SHAPE = (BATCH_SIZE // NUM_MICRO_BATCHES, SEQ_LEN, HIDDEN_SIZE) # if you do no want zero, just comment out this dictionary zero = dict(model_config=dict(tensor_placement_policy='cuda', shard_strategy=TensorShardStrategy()), optimizer_config=dict(initial_scale=2**5)) optimizer = dict( type=HybridAdam, lr=0.000015, weight_decay=1e-2, ) model = dict(type=GPT2_small_pipeline_hybrid, checkpoint=True, num_chunks=1) # pipeline parallel: modify integer value for the number of pipeline stages # tensor parallel: modify size to set the tensor parallel size, usually the number of GPUs per node # for the current model implementation, mode can only be 1D or None parallel = dict( pipeline=1, tensor=dict(size=2, mode='1d'), )