from collections import OrderedDict from copy import copy from typing import Optional, Set import torch import torch.distributed as dist import torch.nn as nn from colossalai.gemini.chunk import Chunk from colossalai.utils import get_current_device def get_temp_total_chunk_on_cuda(chunk: Chunk): if chunk.is_gathered: return chunk.cuda_global_chunk if chunk.cuda_shard is not None: shard_temp = chunk.cuda_shard else: shard_temp = chunk.cpu_shard.to(get_current_device()) total_temp = torch.zeros(chunk.chunk_size, dtype=chunk.dtype, device=get_current_device()) gather_list = list(torch.chunk(input=total_temp, chunks=chunk.pg_size, dim=0)) dist.all_gather(tensor_list=gather_list, tensor=shard_temp, group=chunk.torch_pg) return total_temp def _get_dfs_module_list(module: nn.Module, memo: Optional[Set[nn.Module]] = None, prefix: str = ''): """Get a dfs module list of the given module. Its order is same as the order of creations of modules. """ if memo is None: memo = set() if module not in memo: for name, submodule in module._modules.items(): if submodule is None: continue submodule_prefix = prefix + ('.' if prefix else '') + name for m in _get_dfs_module_list(submodule, memo, submodule_prefix): yield m memo.add(module) yield prefix, module def _get_shallow_copy_model(model: nn.Module): """Get a shallow copy of the given model. Each submodule is different from the original submodule. But the new submodule and the old submodule share all attributes. """ old_to_new = dict() for name, module in _get_dfs_module_list(model): new_module = copy(module) new_module._modules = OrderedDict() for subname, submodule in module._modules.items(): if submodule is None: continue setattr(new_module, subname, old_to_new[submodule]) old_to_new[module] = new_module return old_to_new[model] def get_static_torch_model(zero_ddp_model, device=torch.device("cpu"), dtype=torch.float32, only_rank_0=True) -> torch.nn.Module: """Get a static torch.nn.Module model from the given ZeroDDP module. You should notice that the original ZeroDDP model is not modified. Thus, you can use the original model in further training. But you should not use the returned torch model to train, this can cause unexpected errors. Args: zero_ddp_model (ZeroDDP): a zero ddp model device (torch.device): the device of the final torch model dtype (torch.dtype): the dtype of the final torch model only_rank_0 (bool): if True, only rank0 has the coverted torch model Returns: torch.nn.Module: a static torch model used for saving checkpoints or numeric checks """ from colossalai.nn.parallel import ZeroDDP assert isinstance(zero_ddp_model, ZeroDDP) state_dict = zero_ddp_model.state_dict(only_rank_0=only_rank_0) colo_model = zero_ddp_model.module torch_model = _get_shallow_copy_model(colo_model) if not only_rank_0 or dist.get_rank() == 0: for (name, colo_module), (_, torch_module) in \ zip(_get_dfs_module_list(colo_model), _get_dfs_module_list(torch_model)): # clean the parameter list of the new torch module torch_module._parameters = OrderedDict() for sufix_param_name, param in colo_module.named_parameters(recurse=False): # get the full name of the parameter full_param_name = name + ('.' if name else '') + sufix_param_name assert full_param_name in state_dict, \ f"Can not find parameter `{full_param_name}` in the GeminiDDP module" state_param = state_dict[full_param_name] torch_param = torch.nn.Parameter(state_param.data.to(device=device, dtype=dtype)) setattr(torch_module, sufix_param_name, torch_param) dist.barrier() return torch_model