import functools from abc import ABC, abstractmethod from time import time from typing import List, Optional, Type import torch from colossalai.legacy.utils.memory import colo_device_memory_capacity from colossalai.utils import get_current_device from colossalai.zero.gemini.memory_tracer import MemStatsCollector from .stateful_tensor import StatefulTensor from .tensor_utils import colo_model_data_tensor_move_inline class TensorPlacementPolicy(ABC): def __init__(self, device: Optional[torch.device], mem_stats_collector: Optional[MemStatsCollector] = None) -> None: self.device: Optional[torch.device] = device self.mem_stats_collector: Optional[MemStatsCollector] = mem_stats_collector @abstractmethod def evict_tensors(self, hold_cuda_tensor_list: List[StatefulTensor], **kwargs) -> None: raise NotImplementedError class CPUTensorPlacementPolicy(TensorPlacementPolicy): def __init__(self, mem_stats_collector: Optional[MemStatsCollector] = None) -> None: super().__init__(torch.device("cpu"), mem_stats_collector=mem_stats_collector) def evict_tensors(self, hold_cuda_tensor_list: List[StatefulTensor], **kwargs) -> int: volume = 0 for t in hold_cuda_tensor_list: colo_model_data_tensor_move_inline(t, self.device) volume += t.payload.numel() * t.payload.element_size() return volume, 0 class CUDATensorPlacementPolicy(TensorPlacementPolicy): def __init__(self, mem_stats_collector: Optional[MemStatsCollector] = None) -> None: assert torch.cuda.is_available(), "Cannot use CUDATensorPlacementPolicy when CUDA is not available" super().__init__(get_current_device(), mem_stats_collector=mem_stats_collector) def evict_tensors(self, hold_cuda_tensor_list: List[StatefulTensor], **kwargs) -> int: return 0, 0 class AutoTensorPlacementPolicy(TensorPlacementPolicy): def __init__(self, mem_stats_collector: Optional[MemStatsCollector] = None) -> None: super().__init__(None, mem_stats_collector=mem_stats_collector) # model data will use 1-self._warmup_non_model_data_ratio CUDA memory in warmup phase # TODO(ver217): make these args configurable self._warmup_non_model_data_ratio: float = 0.8 self._steady_cuda_cap_ratio: float = 0.9 def evict_tensors( self, hold_cuda_tensor_list: List[StatefulTensor], cuda_demand: int = 0, warmup: bool = True, compute_list: List[StatefulTensor] = [], compute_idx: int = 0, **kwargs, ) -> int: """ Evict tensors from CUDA device. Args: hold_cuda_tensor_list (List[StatefulTensor]): the list of tensor in state of HOLD-like cuda_demand (int, optional): the volume of data needed on cuda device. Defaults to 0. warmup (bool, optional): a flag indicates whether in the phase of warmup. Defaults to True. compute_list (List[StatefulTensor], optional): TODO. Defaults to []. compute_idx (int, optional): the idx of computing device. Defaults to 0. Raises: RuntimeError: Returns: int: the volume of memory that is evicted """ start = time() cuda_capacity = colo_device_memory_capacity(get_current_device()) used_cuda_model_data = StatefulTensor.GST_MGR.total_mem["cuda"] if warmup: # We designate a part of CUDA memory for model data in warmup iterations. max_cuda_non_model_data_per_period = cuda_capacity * self._warmup_non_model_data_ratio else: # max non-model-data cuda memory consumption of this sampling moment and the next sampling moment. max_cuda_non_model_data_per_period = self.mem_stats_collector.next_period_non_model_data_usage("cuda") cuda_capacity *= self._steady_cuda_cap_ratio total_cuda_model_data = cuda_capacity - max_cuda_non_model_data_per_period avail_cuda_model_data = total_cuda_model_data - used_cuda_model_data freed_cuda_model_data = 0 end = time() if avail_cuda_model_data < cuda_demand: # Move cuda_demand - avail_cuda_model_data volume of tensors # to_free_cuda_model_data = cuda_demand - avail_cuda_model_data to_free_cuda_model_data = cuda_demand - avail_cuda_model_data to_free_tensor_list = hold_cuda_tensor_list if not warmup: to_free_tensor_list = self._sort_hold_cuda_tensors( tuple(hold_cuda_tensor_list), compute_idx, tuple(compute_list) ) # print(self._sort_hold_cuda_tensors.cache_info()) end = time() for t in to_free_tensor_list: if freed_cuda_model_data >= to_free_cuda_model_data: break freed_cuda_model_data += t.payload_size colo_model_data_tensor_move_inline(t, torch.device("cpu")) if freed_cuda_model_data < to_free_cuda_model_data: raise RuntimeError( f"Adjust layout failed! No enough CUDA memory! Need {to_free_cuda_model_data}, freed {freed_cuda_model_data}" ) return freed_cuda_model_data, end - start @staticmethod @functools.lru_cache(maxsize=None) def _sort_hold_cuda_tensors(hold_cuda_tensors: tuple, compute_idx: int, compute_list: tuple) -> list: next_compute_idx = {t: len(compute_list) for t in hold_cuda_tensors} for i in range(len(compute_list) - 1, compute_idx, -1): if compute_list[i] in next_compute_idx: next_compute_idx[compute_list[i]] = i next_compute_idx = sorted(next_compute_idx.items(), key=lambda pair: pair[1], reverse=True) return [t for (t, idx) in next_compute_idx] class TensorPlacementPolicyFactory: @staticmethod def create(policy_name: str) -> Type[TensorPlacementPolicy]: if policy_name == "cpu": return CPUTensorPlacementPolicy elif policy_name == "cuda": return CUDATensorPlacementPolicy elif policy_name == "auto": return AutoTensorPlacementPolicy else: raise TypeError(f"Unknown tensor placement policy {policy_name}")