import torch.nn.functional as F from typing import Optional from colossalai.tensor.op_wrapper import colo_op_impl from colossalai.nn.layer.parallel_1d._utils import reduce_input from colossalai.core import global_context as gpc from colossalai.tensor import ComputePattern, TensorSpec, ComputePattern, ComputeSpec, ColoTensor, distspec from colossalai.context import ParallelMode from ._utils import GeneralTensor, convert_to_colo_tensor def colo_embedding_1Dcol(input_tensor: ColoTensor, weight: ColoTensor, padding_idx: Optional[int] = None, max_norm: Optional[float] = None, norm_type: float = 2.0, scale_grad_by_freq: bool = False, sparse: bool = False) -> ColoTensor: # embedding_1Dcol split the weight(lookup table) to (num_embeddings, embedding_dim/P) # Gather splitted lookup table input_tensor = input_tensor.convert_to_dist_spec(distspec.replicate(weight.tensor_spec.get_process_group())) output_parallel = F.embedding(input_tensor, weight, padding_idx=padding_idx, max_norm=max_norm, norm_type=norm_type, scale_grad_by_freq=scale_grad_by_freq, sparse=sparse) output_spec = TensorSpec( distspec.shard(weight.tensor_spec.get_process_group(), [-1], [weight.tensor_spec.get_process_group_size()]), ComputeSpec(ComputePattern.TP1D)) output = ColoTensor.from_torch_tensor(output_parallel, spec=output_spec) compute_spec = weight.tensor_spec.compute_spec if compute_spec.output_replicate: return output.to_replicate() else: return output def colo_embedding_1Drow(input_tensor: ColoTensor, weight: ColoTensor, padding_idx: Optional[int] = None, max_norm: Optional[float] = None, norm_type: float = 2.0, scale_grad_by_freq: bool = False, sparse: bool = False) -> ColoTensor: # embedding_1Drow split the weight(lookup table) to (num_embeddings/P, embedding_dim) # Find index in this shard and mask those not here # Reduce all input_tensor = input_tensor.convert_to_dist_spec(distspec.replicate(weight.tensor_spec.get_process_group())) tensor_parallel_rank = gpc.get_local_rank(ParallelMode.PARALLEL_1D) num_embeddings_per_partition = weight.size_local(0) vocab_start_index = tensor_parallel_rank * num_embeddings_per_partition vocab_end_index = vocab_start_index + num_embeddings_per_partition # Build the mask. input_mask = (input_tensor < vocab_start_index) | \ (input_tensor >= vocab_end_index) # Mask the input. # TODO(jzy) masked_input may be an activation managed by ColoTensor. masked_input = input_tensor.clone() - vocab_start_index masked_input[input_mask] = 0 partial_output = F.embedding(masked_input, weight, padding_idx=padding_idx, max_norm=max_norm, norm_type=norm_type, scale_grad_by_freq=scale_grad_by_freq, sparse=sparse) # Mask the output embedding. partial_output[input_mask, :] = 0. # Reduce across all the model parallel GPUs. output = reduce_input(partial_output, ParallelMode.PARALLEL_1D) output = ColoTensor.from_torch_tensor(output, spec=TensorSpec(distspec.replicate(weight.tensor_spec.get_process_group()))) return output def colo_embedding_1d(mode: str, input_tensor: ColoTensor, weight: ColoTensor, padding_idx: Optional[int] = None, max_norm: Optional[float] = None, norm_type: float = 2.0, scale_grad_by_freq: bool = False, sparse: bool = False) -> ColoTensor: assert mode in ('row', 'col') funcs = {'row': colo_embedding_1Drow, 'col': colo_embedding_1Dcol} return funcs[mode](input_tensor, weight, padding_idx=padding_idx, max_norm=max_norm, norm_type=norm_type, scale_grad_by_freq=scale_grad_by_freq, sparse=sparse) @colo_op_impl(F.embedding) def colo_embedding(input_tensor: GeneralTensor, weight: GeneralTensor, padding_idx: Optional[int] = None, max_norm: Optional[float] = None, norm_type: float = 2.0, scale_grad_by_freq: bool = False, sparse: bool = False): """Handles ``__torch_function__`` dispatch for ``torch.nn.functional.embedding``. This method looks up an embedding table. """ input_tensor, weight = tuple(map(convert_to_colo_tensor, (input_tensor, weight))) # Handle differen parallel actions. if not weight.has_compute_spec(): # No Model Parallel Applied assert weight.tensor_spec.is_replicate(), 'Invalid weight spec for native embedding op' return ColoTensor.from_torch_tensor( F.embedding(input_tensor, weight, padding_idx=padding_idx, max_norm=max_norm, norm_type=norm_type, scale_grad_by_freq=scale_grad_by_freq, sparse=sparse)) elif weight.tensor_spec.has_compute_pattern(ComputePattern.TP1D): # Single Model Parallel Applied if weight.tensor_spec.is_shard_1drow(): mode = 'row' elif weight.tensor_spec.is_shard_1dcol(): mode = 'col' else: raise NotImplementedError return colo_embedding_1d(mode, input_tensor, weight, padding_idx=padding_idx, max_norm=max_norm, norm_type=norm_type, scale_grad_by_freq=scale_grad_by_freq, sparse=sparse) else: raise NotImplementedError