from typing import Any, Callable, Dict, List import torch import torch.nn as nn from ..policies.autopolicy import get_autopolicy from ..policies.basepolicy import Policy from ..utils.utils import getattr_, hasattr_, setattr_ from .shard_config import ShardConfig from .slicer import Slicer __all__ = ['ModelSharder', 'shard_model'] class ModelSharder(object): r""" Shard the original huggingface model according to the policy Args: policy (:class:`Policy`): The policy to shard the model model (:class:`torch.Module`): The model to shard shard_config: The setting of distributed model """ def __init__( self, model: nn.Module, policy: Policy, shard_config: ShardConfig = None, # TODO ) -> None: self.model = model self.policy = get_autopolicy(self.model) if policy is None else policy self.slicer = Slicer(shard_config) self.shard_config = shard_config self.model_config = self.model.config def shard(self) -> None: self.inject_model(self.model) self.replace_layer(self.model) self.bind_layer(self.model) def inject_model( self, model: nn.Module, ) -> None: r""" Replace the model to policy defined model Mainly modify the forward and backward to fit distributed model e.g. :: BertForMaskedLM.forward -> BertForMaskedLM_.forward """ inject_policy = self.policy.inject_policy() org_model_cls = inject_policy[0] shard_model_cls = inject_policy[1] if model.__class__ == org_model_cls: for key in shard_model_cls.__dict__.keys(): if hasattr(model.__class__, key): setattr( model.__class__, key, getattr(shard_model_cls, key), ) else: raise NotImplementedError(f"{model.__class__} is not implemented so far") def replace_layer( self, model: nn.Module, ) -> None: r""" Replace the layer according to the policy, and replace the layer one by one Args: model (:class:`torch.nn.Module`): The layer to shard """ argument_policies = self.policy.argument_policy(self.model_config, self.shard_config.world_size) for argument_policy in argument_policies.items(): origin_layer_cls = argument_policy[0] attr_dict = argument_policy[1].attr_dict param_funcs = argument_policy[1].param_funcs self.reverse_replace_layer(model, origin_layer_cls, attr_dict, param_funcs) def reverse_replace_layer( self, layer: nn.Module, origin_cls: nn.Module, attr_dict: Dict[str, Any], param_funcs: List[Callable], ) -> None: r""" Reverse the replace layer operation Args: layer (:class:`torch.nn.Module`): The object of layer to shard origin_cls (:class:`transformers.model`): The origin layer class attr_dict (Dict): The attribute dict to modify policy_cls (:class:`Policy`): The policy class """ for name, child in layer.named_children(): if child.__class__ == origin_cls: # replac_layer = child for k, v in attr_dict.items(): setattr_(child, k, v, ignore=True) # print(f"Sharding {name} layer", replac_layer.attention.self.__dict__) # setattr_(layer, name, self.shard_one_layer(child, policy_cls)) self.shard_one_layer(child, param_funcs) continue self.reverse_replace_layer(child, origin_cls, attr_dict, param_funcs) return layer def shard_one_layer( self, org_layer: nn.Module, param_funcs: List[Callable], ) -> None: r""" Shard one layer according to the policy, the layer should be the same class as the key in policy's argument_policy return dict Args: org_layer (:class:`torch.nn.Module`): The origin layer object to shard param_funcs (:class:`List[typing.Callable]`): The function list to get shard information in policy class """ # print(org_layer) for func in param_funcs: policy_layers = func() for policy_layer in policy_layers: weight = None bias = None weight_attr = policy_layer.weight bias_attr = policy_layer.bias replace_layer_cls = policy_layer.replace_layer ignore = policy_layer.ignore if policy_layer.__class__.__name__ == "Col_Layer": gather_output = policy_layer.gather_output # print(gather_output) if weight_attr is not None: if hasattr_(org_layer, weight_attr): weight = getattr_(org_layer, weight_attr) elif not ignore: raise ValueError(f"Layer {org_layer.__class__.__qualname__} has no attribute {weight_attr}") if bias_attr is not None: if hasattr_(org_layer, bias_attr): bias = getattr_(org_layer, bias_attr) elif not ignore: raise ValueError(f"Layer {org_layer.__class__.__qualname__} has no attribute {bias_attr}") # dont have the attribute in policy, and ignore is true if weight is None and bias is None and ignore: continue # set the sliced weight and bias to the new nn_col layer assert weight is not None or bias is not None layer_attr = (lambda x: x[:x.rfind(".")])(weight_attr or bias_attr) # slice weight and bias weight, bias = self.slicer.slice_weight_bias(weight, bias, policy_layer.__class__) # print(os.environ['RANK'], policy_layer.__class__, weight.shape, bias.shape if bias is not None else None) # create new object to replace the origin layer if replace_layer_cls is not None: # print(f"RANK {os.environ['RANK']}: replace {getattr_(org_layer, layer_attr).__class__} to {replace_layer_cls}, shape is {weight.shape}") if isinstance(getattr_(org_layer, layer_attr), nn.Linear): if replace_layer_cls.__name__ == "Linear1D_Row": replace_layer = replace_layer_cls(weight.shape[1], weight.shape[0], bias=False if bias is None else True) elif replace_layer_cls.__name__ == "Linear1D_Col": replace_layer = replace_layer_cls(weight.shape[0], weight.shape[1], bias=False if bias is None else True, gather_output=gather_output) setattr_(org_layer, layer_attr, replace_layer, ignore=ignore) self.set_param(replace_layer, weight, bias) elif isinstance(getattr_(org_layer, layer_attr), nn.Embedding): replace_layer = replace_layer_cls(weight.shape[0], weight.shape[1], getattr_(org_layer, f"{layer_attr}.padding_idx", ignore=True)) setattr_(org_layer, layer_attr, replace_layer, ignore=ignore) self.set_param(replace_layer, weight, bias) else: raise NotImplementedError( f"Replacing {getattr_(org_layer, layer_attr).__class__} is not implemented so far") # do not replace the layer object, just replace the weight and bias else: self.set_param(org_layer, layer_attr, weight, bias) def set_param(self, layer: Any, weight: torch.Tensor = None, bias: torch.Tensor = None, layer_attr: str = "") -> None: r""" Reset the weight and bias of the layer object Args: layer (:class:`torch.nn.Module`): The layer object layer_attr (str): The attribute name of the layer weight (:class:`torch.Tensor`): The weight of the layer bias (:class:`torch.Tensor`): The bias of the layer """ assert weight is not None or bias is not None if weight is not None: setattr_(layer, "weight" if layer_attr == "" else layer_attr + ".weight", nn.Parameter(weight.contiguous())) self.set_layer_size(layer, layer_attr, weight.shape) if bias is not None: setattr_(layer, "bias" if layer_attr == "" else layer_attr + ".bias", nn.Parameter(bias.contiguous())) def set_layer_size(self, layer: nn.Module, layer_attr: str, size: torch.Size) -> None: r""" Set the layer attribute Args: layer (:class:`torch.nn.Module`): The layer object layer_attr (str): The attribute name of the layer size (:class:`torch.Size`): The size of the tensor """ # Tensor.shape[0] -> out_features, Tensor.shape[1] -> in_features attrs = ["out_features", "in_features"] for i, attr in enumerate(attrs): if hasattr_(layer, f"{layer_attr}.{attr}"): setattr_(layer, f"{layer_attr}.{attr}", size[i]) def bind_layer(self, model: nn.Module) -> None: r""" Bind the layer according to the binding policy Args: model (:class:`torch.nn.Module`): The shard model """ binding_map = self.policy.binding_policy() for k, v in binding_map.items(): param = getattr_(model, k) param = nn.Parameter(param) setattr_(model, k, param) setattr_(model, v, param) def shard_model(model: nn.Module, shard_config: ShardConfig = None, policy: Policy = None): r""" The function is used to shard the PyTorch model. Args: model (`torch.nn.Model`): the origin huggingface model shard_config (`ShardConfig`): the config for distribute information policy (`Policy`): the custom policy for sharding """ sharder = ModelSharder(model=model, shard_config=shard_config, policy=policy) sharder.shard() return model