#!/usr/bin/env python # -*- encoding: utf-8 -*- from .amp_type import AMP_TYPE from colossalai.context import Config import torch.nn as nn from torch.optim import Optimizer from torch.nn.modules.loss import _Loss from .torch_amp import convert_to_torch_amp from .apex_amp import convert_to_apex_amp from .naive_amp import convert_to_naive_amp def convert_to_amp(model: nn.Module, optimizer: Optimizer, criterion: _Loss, mode: AMP_TYPE, amp_config: Config = None): """A helper function to wrap training components with Torch AMP modules :param model: your model object :type model: :class:`torch.nn.Module` :param optimizer: your optimizer object :type optimizer: :class:`torch.optim.Optimzer` :param criterion: your loss function object :type criterion: :class:`torch.nn.modules.loss._Loss` :param mode: amp mode :type mode: :class:`colossalai.amp.AMP_TYPE` :param amp_config: configuration for different amp modes :type amp_config: :class:`colossalai.context.Config` or dict :return: (model, optimizer, criterion) :rtype: Tuple """ assert isinstance(mode, AMP_TYPE), \ f'expected the argument mode be AMP_TYPE, but got {type(mode)}' if amp_config is None: amp_config = Config() if mode == AMP_TYPE.TORCH: model, optimizer, criterion = convert_to_torch_amp(model, optimizer, criterion, amp_config) elif mode == AMP_TYPE.APEX: model, optimizer = convert_to_apex_amp(model, optimizer, amp_config) elif mode == AMP_TYPE.NAIVE: model, optimizer = convert_to_naive_amp(model, optimizer, amp_config) return model, optimizer, criterion