import torch from torch.fx import GraphModule import torch.nn as nn import pytest from colossalai.auto_parallel.solver.options import SolverOptions from colossalai.auto_parallel.solver.strategies_constructor import StrategiesConstructor from colossalai.fx.tracer.tracer import ColoTracer from colossalai.device.device_mesh import DeviceMesh class ConvModel(nn.Module): def __init__(self, c_in, c_out): super().__init__() self.conv = nn.Conv2d(c_in, c_out, kernel_size=3) def forward(self, x): x = self.conv(x) x = torch.flatten(x) return x def test_conv_handler(): physical_mesh_id = torch.arange(0, 4) mesh_shape = (2, 2) # [[0, 1] # [2, 3]] device_mesh = DeviceMesh(physical_mesh_id, mesh_shape) tracer = ColoTracer() model = ConvModel(16, 32) input_sample = {'x': torch.rand(4, 16, 64, 64).to('meta')} # graph(): # %x : torch.Tensor [#users=1] = placeholder[target=x] # %conv : [#users=1] = call_module[target=conv](args = (%mul,), kwargs = {}) # return flatten graph = tracer.trace(root=model, meta_args=input_sample) gm = GraphModule(model, graph, model.__class__.__name__) # [x, conv, flatten, output] nodes = [node for node in gm.graph.nodes] solver_options = SolverOptions(fast=True) strategies_constructor = StrategiesConstructor(graph, device_mesh, solver_options) strategies_constructor.build_strategies_and_cost() strategy_map = strategies_constructor.strategy_map conv_strategies = strategy_map[nodes[1]] flatten_strategies = strategy_map[nodes[2]] flatten_strategies_cover_list = [strategy.input_shardings[0].sharding_sequence for strategy in flatten_strategies] for strategy in conv_strategies: assert strategy.output_sharding_spec.sharding_sequence in flatten_strategies_cover_list if __name__ == '__main__': test_conv_handler()