import torch from torch.utils._pytree import tree_map, tree_flatten __all__ = ['MetaTensor'] class MetaTensor(torch.Tensor): """ A wrapping tensor that hacks `torch.autograd` without patching more `torch.ops.aten` ops. """ _tensor: torch.Tensor __slots__ = ['_tensor'] @staticmethod def __new__(cls, elem): # The wrapping tensor (MetaTensor) shouldn't hold any # memory for the class in question, but it should still # advertise the same device as before r = torch.Tensor._make_wrapper_subclass( cls, elem.size(), strides=elem.stride(), storage_offset=elem.storage_offset(), dtype=elem.dtype, layout=elem.layout, device='cpu', requires_grad=elem.requires_grad) # deceive the frontend for aten selections r._tensor = elem # ...the real tensor is held as an element on the tensor. return r def __repr__(self): if self.grad_fn: return f"MetaTensor({self._tensor}, grad_fn={self.grad_fn})" return f"MetaTensor({self._tensor})" @classmethod def __torch_dispatch__(cls, func, types, args=(), kwargs=None): def unwrap(x): if isinstance(x, torch.Tensor) and not hasattr(x, '_tensor'): x = MetaTensor(x) return x._tensor.to('meta') if isinstance(x, MetaTensor) else x args = tree_map(unwrap, args) kwargs = tree_map(unwrap, kwargs) # run aten for backend=CPU but actually on backend=Meta out = func(*args, **kwargs) # Now, we want to continue propagating this tensor, so we rewrap Tensors in # our custom tensor subclass def wrap(x): return MetaTensor(x) if isinstance(x, torch.Tensor) else x return tree_map(wrap, out)