from typing import List, Tuple import torch from torch.fx import GraphModule, Node from colossalai.fx.graph_module import ColoGraphModule from colossalai.fx.profiler import parameter_size import math from .linearize import linearize from .utils import * from colossalai.fx.passes.meta_info_prop import MetaInfoProp from colossalai.fx.codegen.activation_checkpoint_codegen import _find_nested_ckpt_regions # this is the python compute table code from rotor # https://gitlab.inria.fr/hiepacs/rotor # paper link: https://hal.inria.fr/hal-02352969 def _compute_table(chain: Chain, mmax) -> Tuple: """Returns the optimal table: a tuple containing: Opt[m][lmin][lmax] with lmin = 0...chain.length and lmax = lmin...chain.length (lmax is not included) and m = 0...mmax what[m][lmin][lmax] is (True,) if the optimal choice is a chain checkpoint (False, j) if the optimal choice is a leaf checkpoint of length j The computation uses dynamic programming""" fw = chain.fweight + [0] ## forward time bw = chain.bweight ## backward time, not used cw = chain.cweight + [0] ## size of x (and of y) cbw = chain.cbweight + [0] ## size of xbar fwd_mem_tmp = chain.fwd_mem_tmp + [0] bwd_mem_tmp = chain.bwd_mem_tmp + [0] # Build table opt = [[{} for _ in range(chain.length + 1)] for _ in range(mmax + 1)] what = [[{} for _ in range(chain.length + 1)] for _ in range(mmax + 1)] ## Last one is a dict because its indices go from i to l. Renumbering will wait for C implementation # Initialize borders of the tables for lmax-lmin = 0 for m in range(mmax + 1): for i in range(chain.length + 1): #lmax-lmin = 0 limit = max(cw[i + 1] + cbw[i + 1] + fwd_mem_tmp[i], cw[i + 1] + cbw[i + 1] + bwd_mem_tmp[i]) if m >= limit: ## Equation (1) opt[m][i][i] = fw[i] + bw[i] else: opt[m][i][i] = float("inf") # Compute everything for m in range(mmax + 1): for d in range(1, chain.length + 1): for i in range(chain.length + 1 - d): # for idx in range(i+1, chain.length + 1): idx = i + d mmin = cw[idx + 1] + cw[i + 1] + fwd_mem_tmp[i] if idx > i + 1: mmin = max(mmin, cw[idx + 1] + max(cw[j] + cw[j + 1] + fwd_mem_tmp[j] for j in range(i + 1, idx))) if m < mmin: opt[m][i][idx] = float("inf") else: leaf_checkpoints = [(j, sum(fw[i:j]) + opt[m - cw[j]][j][idx] + opt[m][i][j - 1]) for j in range(i + 1, idx + 1) if m >= cw[j]] if leaf_checkpoints: best_leaf = min(leaf_checkpoints, key=lambda t: t[1]) else: best_leaf = None if m >= cbw[i + 1]: chain_checkpoint = opt[m][i][i] + opt[m - cbw[i + 1]][i + 1][idx] else: chain_checkpoint = float("inf") if best_leaf and best_leaf[1] <= chain_checkpoint: opt[m][i][idx] = best_leaf[1] what[m][i][idx] = (False, best_leaf[0]) else: opt[m][i][idx] = chain_checkpoint what[m][i][idx] = (True,) return (opt, what) def _rec(chain: Chain, lmin, lmax, cmem, opt_table): """ chain : the class describing the AC graph lmin : index of the first forward to execute lmax : upper bound index of the last forward to execute (not included) cmem : number of available memory slots Return the optimal sequence of makespan Opt_hete[cmem][lmin][lmax-lmin]""" if cmem <= 0: raise ValueError("Can not process a chain with negative memory {cmem}".format(cmem=cmem)) opt, what = opt_table sequence = Sequence(Function("Persistent", lmax - lmin, cmem)) if opt[cmem][lmin][lmax] == float("inf"): raise ValueError("Can not process this chain from index {lmin} to {lmax} with memory {cmem}".format(lmin=lmin, lmax=lmax, cmem=cmem)) if lmin == lmax: if lmin == chain.length: sequence.insert(Loss()) else: sequence.insert(ForwardEnable(lmin)) sequence.insert(Backward(lmin)) return sequence if what[cmem][lmin][lmax][0]: sequence.insert(ForwardEnable(lmin)) sequence.insert_sequence(_rec(chain, lmin + 1, lmax, cmem - chain.cbweight[lmin + 1], opt_table)) sequence.insert(Backward(lmin)) else: j = what[cmem][lmin][lmax][1] sequence.insert(ForwardCheck(lmin)) for k in range(lmin + 1, j): sequence.insert(ForwardNograd(k)) sequence.insert_sequence(_rec(chain, j, lmax, cmem - chain.cweight[j], opt_table)) sequence.insert_sequence(_rec(chain, lmin, j - 1, cmem, opt_table)) return sequence def _discretize(mem_unit, values): return [math.ceil(value / mem_unit) for value in values] def _compute_size(obj: torch.Tensor) -> int: return obj.numel() * obj.element_size() def _compute_output_size(node: List[Node]) -> int: """Compute the output size of a node Args: node (List[Node]): node, list of torch.fx.Node Returns: int: output size """ return node[-1].meta['tensor_meta'].numel * torch.tensor([], dtype=node[-1].meta['tensor_meta'].dtype).element_size() def _get_inplace(node: Node) -> bool: """Get the inplace argument from torch.fx.Node Args: node (Node): torch.fx.Node Returns: bool: indicates whether this op is inplace """ is_inplace = False if node.op == "call_function": is_inplace = node.kwargs.get("inplace", False) elif node.op == "call_module": is_inplace = getattr(node.graph.owning_module.get_submodule(node.target), "inplace", False) return is_inplace def _fwd_xbar(node: List[Node]) -> int: """Get the forward xbar of a node Args: node (List[Node]): List of torch.fx Node, indicates a node in linearized graph Returns: int: xbar size, unit Byte """ xbar = 0 for n in node: xbar += n.meta['fwd_mem_tmp'] + n.meta['fwd_mem_out'] return xbar def _fwd_time(node: List[Node]) -> int: """Get the foward time of a node Args: node (List[Node]): List of torch.fx Node, indicates a node in linearized graph Returns: int: foward time, extimated by flops count """ fwd_time = 0 for n in node: # minimum flop count is needed fwd_time += max(n.meta['fwd_flop'], 1) return fwd_time def _bwd_time(node: List[Node]) -> int: """Get the backward time of a node Args: node (List[Node]): List of torch.fx Node, indicates a node in linearized graph Returns: int: backward time, extimated by flops count """ bwd_time = 0 for n in node: # minimum flop count is needed bwd_time += max(n.meta['bwd_flop'], 1) return bwd_time def _get_bwd_mem_tmp(node: List[Node]) -> int: """Get the backward temp memory of a node Args: node (List[Node]): List of torch.fx Node, indicates a node in linearized graph Returns: int: backward temp memory, unit Byte """ def _get_deps_size(): deps_size = 0 for k, v in deps.items(): if v > 0: deps_size += k.meta['bwd_mem_out'] return deps_size bwd_mem_tmp = 0 deps = {} # add all the users for last node into deps, # as those nodes' gradient out will be stored in memory for child in node[-1].users: deps[child] = 1 for n in reversed(node): bwd_mem_tmp = max(bwd_mem_tmp, _get_deps_size() + n.meta['bwd_mem_tmp']) deps[n] = len(n.all_input_nodes) for child in n.users: if child in deps: deps[child] -= 1 for key in list(deps.keys()): if deps[key] == 0: del deps[key] return bwd_mem_tmp def _construct_chain(node_list: List[List[Node]], data, mem_unit: int) -> Chain: fwd_time = [] bwd_time = [] if isinstance(data, torch.Tensor): xbar_sizes = [_compute_size(data)] x_sizes = [_compute_size(data)] elif isinstance(data, list) or isinstance(data, tuple): xbar_sizes = [sum([_compute_size(obj) for obj in data])] x_sizes = [sum([_compute_size(obj) for obj in data])] elif isinstance(data, dict): xbar_sizes = [sum([_compute_size(obj) for obj in data.values()])] x_sizes = [sum([_compute_size(obj) for obj in data.values()])] # currently we can't get the temp memory needed in fwd tmp_fwd = [0] * len(node_list) tmp_bwd = [] for idx, node in enumerate(node_list): fwd_time.append(_fwd_time(node)) bwd_time.append(_bwd_time(node)) x_sizes.append(_compute_output_size(node)) xbar_sizes.append(max(x_sizes[-1], _fwd_xbar(node))) tmp_bwd.append(_get_bwd_mem_tmp(node)) # if a node with only one inplace op, we need to let x_bar = 0 if len(node) == 1 and _get_inplace(node[0]): xbar_sizes[-1] = 0 bwd_time.append(0) # currently we view loss backward temp as zero tmp_bwd.append(0) xbar_sizes = _discretize(mem_unit, xbar_sizes) x_sizes = _discretize(mem_unit, x_sizes) tmp_fwd = _discretize(mem_unit, tmp_fwd) tmp_bwd = _discretize(mem_unit, tmp_bwd) return Chain(fwd_time, bwd_time, x_sizes, xbar_sizes, tmp_fwd, tmp_bwd) def _annotate_from_sequence(sequence: Sequence, node_list: List[List[Node]]): op_list = sequence.list_operations() loss_op = next(op for op in op_list if isinstance(op, Loss)) fwd_list = op_list[:op_list.index(loss_op)] bwd_list = op_list[op_list.index(loss_op) + 1:] ckpt_idx = 0 in_ckpt = False ckpt_region = [] # forward annotation for idx, op in enumerate(fwd_list, 0): if in_ckpt: if isinstance(op, ForwardNograd): ckpt_region.append(idx) elif isinstance(op, ForwardEnable): in_ckpt = False for node_idx in ckpt_region: for n in node_list[node_idx]: setattr(n, "activation_checkpoint", [ckpt_idx]) ckpt_idx += 1 ckpt_region = [] elif isinstance(op, ForwardCheck): for node_idx in ckpt_region: for n in node_list[node_idx]: setattr(n, "activation_checkpoint", [ckpt_idx]) ckpt_idx += 1 ckpt_region = [idx] else: if isinstance(op, ForwardCheck): in_ckpt = True ckpt_region.append(idx) # annotate the backward if there is any nested activation checkpoint in_recompute = False for op in bwd_list: if in_recompute: if isinstance(op, ForwardNograd): ckpt_region.append(op.index) elif isinstance(op, ForwardEnable): for node_idx in ckpt_region: for n in node_list[node_idx]: n.activation_checkpoint.append(ckpt_idx) ckpt_idx += 1 ckpt_region = [] elif isinstance(op, ForwardCheck): for node_idx in ckpt_region: for n in node_list[node_idx]: n.activation_checkpoint.append(ckpt_idx) ckpt_idx += 1 ckpt_region = [op.index] elif isinstance(op, Backward): for node_idx in ckpt_region: for n in node_list[node_idx]: n.activation_checkpoint.append(ckpt_idx) in_recompute = False else: if not isinstance(op, Backward): in_recompute = True ckpt_idx = 0 ckpt_region = [] if isinstance(op, ForwardCheck): ckpt_region.append(op.index) # postprocess, make sure every activation checkpoint label in the # same activation checkpoint region (level = 0) has the same length op_list = [] for node in node_list: op_list += node ckpt_regions = _find_nested_ckpt_regions(op_list) for (start_idx, end_idx) in ckpt_regions: nested_length = max(len(op_list[idx].activation_checkpoint) for idx in range(start_idx, end_idx + 1)) for idx in range(start_idx, end_idx + 1): op_list[idx].activation_checkpoint += [None] * (nested_length - len(op_list[idx].activation_checkpoint)) def solver_rotor(gm: ColoGraphModule, data, mem_limit: int, mem_slots: int = 500, cnode: List[str] = None, eps: float = 0.02) -> ColoGraphModule: """solver that automatically find activation checkpoint in rotor's manner Args: gm (ColoGraphModule): ColoGraphModule generated by tracing model. data (torch.Tensor): input data. mem_limit (int): memory budget in Byte. mem_slots (int, optional): number of slots for discretizing memory budget. Defaults to 500. cnode (List[Node], optional): common node list for linearize. Defaults to None. eps (float): epsilon for memory decay. Defaults to 0.02 Returns: ColoGraphModule: annotated ColoGraphModuled with __sequence__ attribute """ node_list = linearize(gm, cnode) mem_limit -= parameter_size(gm) mem_unit = mem_limit * (1.0 - eps) // mem_slots MetaInfoProp(gm).run(data) chain: Chain = _construct_chain(node_list, data, mem_unit) opt_table = _compute_table(chain, mem_slots) sequence = _rec(chain, 0, chain.length, mem_slots - chain.cweight[0], opt_table) _annotate_from_sequence(sequence, node_list) # set __sequence__ attribute to GraphModule setattr(gm, "__sequence__", sequence) return gm