import os import argparse import torch from torch import nn import torch.multiprocessing as mp import torch.distributed.rpc as rpc from colossalai.pipeline.rpc.PipelineBase import FillDrainPipelineEngine, OneFOneBPipelineEngine class TestModel(nn.Module): def __init__(self, stage_id, actual_stage_num, feat_num, h) -> None: super().__init__() self.rank = stage_id self.is_last_rank = stage_id == actual_stage_num - 1 self.linear_name = f'linear_{stage_id}' if stage_id == 0: setattr(self, self.linear_name, nn.Linear(feat_num, h)) elif stage_id == actual_stage_num - 1: setattr(self, self.linear_name, nn.Linear(h, 1)) else: setattr(self, self.linear_name, nn.Linear(h, h)) def forward(self, x) -> torch.Tensor: linear: nn.Module = getattr(self, self.linear_name) out: torch.Tensor = linear(x) if self.is_last_rank: out = out.sum() return out def run_main(args): torch.manual_seed(100) device = args.device stage_num = args.world_size chunk = args.chunk num_microbatches = args.num_microbatches actual_stage_num = stage_num * chunk use_interleave = args.use_interleave use_checkpoint = args.use_checkpoint sample_num = 1024 feat_num = 10 h = 10 batch_size = 1024 assert sample_num % batch_size == 0 batch_num = sample_num // batch_size input_sample = torch.randn((sample_num, feat_num), device=device) module_partitions = [TestModel(pp_rank, actual_stage_num, feat_num, h) for pp_rank in range(actual_stage_num)] engine = OneFOneBPipelineEngine(module_partitions=module_partitions, stage_num=stage_num, num_microbatches=num_microbatches, device=device, chunk=chunk, use_interleave=use_interleave, checkpoint=use_checkpoint) _ = engine.forward_backward(input_sample) def run_worker(rank, args): os.environ['MASTER_ADDR'] = args.master_addr os.environ['MASTER_PORT'] = args.master_port # config rpc # if cuda is used, set_device_map is a must is configured # for cuda is not supported in torch rpc by default options = rpc.TensorPipeRpcBackendOptions(num_worker_threads=args.num_worker_threads) world_size = args.world_size for rank_idx in range(world_size): options.set_device_map(f'work{rank_idx}', {rank: rank_idx}) rpc.init_rpc(name=f'work{rank}', rank=rank, world_size=world_size, rpc_backend_options=options) # in rpc mode, only rank 0 is needed to be coded if rank == 0: run_main(args) # barrier here rpc.shutdown() def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--world_size', type=int, default=2) parser.add_argument('--num_microbatches', type=int, default=2) parser.add_argument('--device', type=str, default='cuda') parser.add_argument('--chunk', type=int, default=1) parser.add_argument('--use_checkpoint', action='store_true') parser.add_argument('--use_interleave', action='store_true') parser.add_argument('--master_addr', type=str, default='localhost') parser.add_argument('--master_port', type=str, default='29020') parser.add_argument('--num_worker_threads', type=str, default=128) return parser.parse_args() if __name__ == "__main__": args = parse_args() world_size = args.world_size assert args.device in ['cpu', 'cuda'], "device must be cpu or cuda!" mp.spawn(run_worker, args=(args,), nprocs=world_size)