from copy import deepcopy import numpy as np import torch from colossalai.testing import clear_cache_before_run from colossalai.zero import ColoInitContext from colossalai.zero.gemini.memory_tracer.runtime_mem_tracer import RuntimeMemTracer from tests.components_to_test import run_fwd_bwd from tests.components_to_test.registry import non_distributed_component_funcs @clear_cache_before_run() def test_runtime_mem_tracer(): test_models = ['gpt2', 'bert', 'simple_net', 'repeated_computed_layers', 'nested_model', 'albert'] for model_name in test_models: get_components_func = non_distributed_component_funcs.get_callable(model_name) model_builder, train_dataloader, _, _, criterion = get_components_func() with ColoInitContext(device='cpu'): model = model_builder(checkpoint=False) model_bk = deepcopy(model) runtime_mem_tracer = RuntimeMemTracer(model) for i, (data, label) in enumerate(train_dataloader): if i > 1: break data = data.cuda() label = label.cuda() run_fwd_bwd(runtime_mem_tracer, data, label, criterion, optimizer=runtime_mem_tracer) for p1, p2 in zip(model_bk.parameters(), model.parameters()): torch.allclose(p1.to(torch.half), p2) non_model_data_list = runtime_mem_tracer._memstats.non_model_data_list('cuda') cuda_non_model_data_list = np.array(non_model_data_list) / 1024**2 print("cuda_non_model_data_list", len(cuda_non_model_data_list)) print(non_model_data_list) cnt1 = 0 for p in runtime_mem_tracer.parameters_in_runtime_order(): cnt1 += 1 cnt2 = 0 for p in model.parameters(): cnt2 += 1 assert cnt2 == cnt1, f'visited param number {cnt1} vs real param number {cnt2}' del model if __name__ == '__main__': test_runtime_mem_tracer()