#!/usr/bin/env python # -*- encoding: utf-8 -*- from copy import deepcopy from functools import partial import colossalai import pytest import torch import torch.multiprocessing as mp from colossalai.utils import free_port from colossalai.zero.shard_utils import (BucketTensorShardStrategy, TensorShardStrategy) from colossalai.zero.sharded_model import ShardedModelV2 from tests.components_to_test.registry import non_distributed_component_funcs from common import CONFIG def run_dist(rank, world_size, port, shard_strategy): colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') test_models = ['repeated_computed_layers', 'resnet18'] shard_strategy = shard_strategy() for model_name in test_models: get_components_func = non_distributed_component_funcs.get_callable(model_name) model_builder, train_dataloader, test_dataloader, optimizer, criterion = get_components_func() model = model_builder() model = model.half().cuda() zero_model = ShardedModelV2(deepcopy(model), shard_strategy) zero_state_dict = zero_model.state_dict() for key, val in model.state_dict().items(): assert torch.equal(val, zero_state_dict[key]) @pytest.mark.dist @pytest.mark.parametrize("world_size", [1, 2]) @pytest.mark.parametrize("shard_strategy", [TensorShardStrategy, BucketTensorShardStrategy]) def test_zero_state_dict(world_size, shard_strategy): run_func = partial(run_dist, world_size=world_size, port=free_port(), shard_strategy=shard_strategy) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_zero_state_dict(2, TensorShardStrategy)