from copy import deepcopy from functools import partial import colossalai import pytest import torch import torch.multiprocessing as mp from colossalai.testing import parameterize, rerun_if_address_is_in_use from colossalai.utils import free_port from colossalai.zero.shard_utils import (BucketTensorShardStrategy, TensorShardStrategy) from colossalai.zero.sharded_param import ShardedTensor from colossalai.zero.sharded_param.sharded_param import ShardedParamV2 from tests.test_zero.common import CONFIG, allclose from colossalai.gemini.stateful_tensor import StatefulTensor @parameterize("shard_strategy_class", [TensorShardStrategy, BucketTensorShardStrategy]) def run_shard_tensor_with_strategy(shard_strategy_class, world_size): t = ShardedTensor(tensor=torch.randn(world_size * 2, 3)) assert list(t.origin_shape) == [world_size * 2, 3] assert list(t.shape) == [world_size * 2, 3] shard_strategy = shard_strategy_class() # test shard strategy shard_strategy.shard([t]) assert list(t.shape) == [6], f"{list(t.shape)} vs 6" shard_strategy.gather([t]) assert list(t.shape) == [world_size * 2, 3], f"{list(t.shape)} vs {[world_size * 2, 3]}" def _run_shard_tensor(rank, world_size, port): colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') run_shard_tensor_with_strategy(world_size=world_size) @pytest.mark.dist @pytest.mark.parametrize("world_size", [1, 2]) @rerun_if_address_is_in_use() def test_shard_tensor(world_size): run_func = partial(_run_shard_tensor, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) def _run_shard_param_v2(rank, world_size, port): colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') param = torch.nn.Parameter(torch.randn(2, 3)) param_ref = deepcopy(param) sparam = ShardedParamV2(param=param) allclose(sparam.data_payload, param_ref.data) # Test get memory usage sparam.saved_grad = StatefulTensor(torch.randn(2, 3)) cuda_mem_use, cpu_mem_use = sparam.get_memory_usage() assert cpu_mem_use == 2 * 3 * 4 * 2, f"cpu_mem_use: {cpu_mem_use}" sparam.set_data_none() assert (param.data.numel() == 0) cuda_mem_use, cpu_mem_use = sparam.get_memory_usage() # 4 is size of dummy tensor of param.data assert cpu_mem_use == 2 * 3 * 4 * 2 sparam.saved_grad = StatefulTensor(torch.randn(2, 3)) sparam.set_data_none() cuda_mem_use, cpu_mem_use = sparam.get_memory_usage() assert cpu_mem_use == 2 * 3 * 4 * 2 assert cuda_mem_use == 0 # append a grad to torch param param.data = sparam.data_payload param.grad = torch.randn(2, 3) cuda_mem_use, cpu_mem_use = sparam.get_memory_usage() assert cpu_mem_use == 2 * 3 * 4 * 2 + 2 * 3 * 4, f"cpu_mem_use {cpu_mem_use}" assert cuda_mem_use == 0 # reuse torch grad for sparam sparam.saved_grad = StatefulTensor(param.grad) cuda_mem_use, cpu_mem_use = sparam.get_memory_usage() assert cpu_mem_use == 2 * 3 * 4 * 2 assert cuda_mem_use == 0 @pytest.mark.dist @pytest.mark.parametrize("world_size", [1, 2]) @rerun_if_address_is_in_use() def test_shard_param_v2(world_size): run_func = partial(_run_shard_param_v2, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': # test_shard_tensor(2) test_shard_param_v2(2)