from functools import partial import pytest import torch import torch.nn as nn import torch.multiprocessing as mp import colossalai from colossalai.context import ParallelMode from colossalai.core import global_context as gpc from colossalai.utils import free_port, get_current_device from colossalai.nn.layer.moe import Top1Router, Top2Router, MoeLayer, Experts from colossalai.context.moe_context import MOE_CONTEXT BATCH_SIZE = 16 NUM_EXPERTS = 4 CONFIG = dict() def check_equal(tensor_a, tensor_b, atol=1e-06): assert torch.allclose(tensor_a, tensor_b, rtol=0, atol=atol) is True def run_routing(rank, world_size, port, rs=2, hidden_size=128, data_type=torch.float32, router=Top2Router): # Here we do not need TF32, since it brings absolute error on results torch.backends.cuda.matmul.allow_tf32 = False colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') local_rank = gpc.get_local_rank(ParallelMode.GLOBAL) MOE_CONTEXT.setup(42) # MOE environment initialization MOE_CONTEXT.reset_loss() torch.manual_seed(rs + local_rank) # set each process has different random seed # get randomized data tokens = torch.randn(BATCH_SIZE, hidden_size, dtype=data_type, device=get_current_device(), requires_grad=True) expert_module = nn.Linear expert_factor = dict(in_features=hidden_size, out_features=hidden_size, device=get_current_device()) expert = Experts(expert_module, NUM_EXPERTS, **expert_factor) layer = MoeLayer(hidden_size, NUM_EXPERTS, router(capacity_factor_train=1.0), expert) if data_type == torch.float16: layer = layer.half() # use matrix multiplication instead of COL_MOE_KERNL in MOE dispatch and combine layer.use_kernel = False old_out = layer(tokens) ech = old_out.shape grad = torch.randn(ech, device=get_current_device()) old_out.backward(grad) # get gradient # save all results o_tk_grad = tokens.grad.data.clone() o_gt_grad = layer.gate.weight.grad.data.clone() # reset all gradients tokens.grad.zero_() layer.gate.weight.grad.zero_() layer.use_kernel = True new_out = layer(tokens) # get ouputs through colossal kernel if data_type == torch.float32: check_equal(old_out, new_out) else: check_equal(old_out, new_out, 1e-2) # forward function passed new_out.backward(grad) # get new type gradient n_tk_grad = tokens.grad.data.clone() n_gt_grad = layer.gate.weight.grad.data.clone() if data_type == torch.float32: check_equal(o_tk_grad, n_tk_grad) else: check_equal(o_tk_grad, o_tk_grad, 1e-2) # tokens gradient is correct if data_type == torch.float32: check_equal(o_gt_grad, n_gt_grad, 5e-05) else: check_equal(o_gt_grad, n_gt_grad, 2e-01) # bias gradient is correct @pytest.mark.dist @pytest.mark.parametrize("rs", [131]) @pytest.mark.parametrize("hidden_size", [32, 144]) @pytest.mark.parametrize("data_type", [torch.float32, torch.float16]) @pytest.mark.parametrize("router", [Top1Router, Top2Router]) def test_moe_kernel(rs, hidden_size, data_type, router): world_size = 4 run_func = partial(run_routing, world_size=world_size, port=free_port(), rs=rs, hidden_size=hidden_size, data_type=data_type, router=router) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_moe_kernel(2, 256, torch.float16, Top2Router)