""" Class for loading table type data. please refer to Pandas-Input/Output for file format details. """ import glob import os import pandas as pd from colossalqa.mylogging import get_logger from colossalqa.utils import drop_table from sqlalchemy import create_engine logger = get_logger() SUPPORTED_DATA_FORMAT = [".csv", ".xlsx", ".xls", ".json", ".html", ".h5", ".hdf5", ".parquet", ".feather", ".dta"] class TableLoader: """ Load tables from different files and serve a sql database for database operations """ def __init__(self, files: str, sql_path: str = "sqlite:///mydatabase.db", verbose=False, **kwargs) -> None: """ Args: files: list of files (list[file path, name]) sql_path: how to serve the sql database **kwargs: keyword type arguments, useful for certain document types """ self.data = {} self.verbose = verbose self.sql_path = sql_path self.kwargs = kwargs self.sql_engine = create_engine(self.sql_path) drop_table(self.sql_engine) self.sql_engine = create_engine(self.sql_path) for item in files: path = item[0] dataset_name = item[1] if not os.path.exists(path): raise FileNotFoundError(f"{path} doesn't exists") if not any([path.endswith(i) for i in SUPPORTED_DATA_FORMAT]): raise TypeError(f"{path} not supported. Supported type {SUPPORTED_DATA_FORMAT}") logger.info("loading data", verbose=self.verbose) self.load_data(path) logger.info("data loaded", verbose=self.verbose) self.to_sql(path, dataset_name) def load_data(self, path): """ Load data and serve the data as sql database. Data must be in pandas format """ files = [] # Handle glob expression try: files = glob.glob(path) except Exception as e: logger.error(e) if len(files) == 0: raise ValueError("Unsupported file/directory format. For directories, please use glob expression") elif len(files) == 1: path = files[0] else: for file in files: self.load_data(file) if path.endswith(".csv"): # Load csv self.data[path] = pd.read_csv(path) elif path.endswith(".xlsx") or path.endswith(".xls"): # Load excel self.data[path] = pd.read_excel(path) # You can adjust the sheet_name as needed elif path.endswith(".json"): # Load json self.data[path] = pd.read_json(path) elif path.endswith(".html"): # Load html html_tables = pd.read_html(path) # Choose the desired table from the list of DataFrame objects self.data[path] = html_tables[0] # You may need to adjust this index elif path.endswith(".h5") or path.endswith(".hdf5"): # Load h5 self.data[path] = pd.read_hdf(path, key=self.kwargs.get("key", "data")) # You can adjust the key as needed elif path.endswith(".parquet"): # Load parquet self.data[path] = pd.read_parquet(path, engine="fastparquet") elif path.endswith(".feather"): # Load feather self.data[path] = pd.read_feather(path) elif path.endswith(".dta"): # Load dta self.data[path] = pd.read_stata(path) else: raise ValueError("Unsupported file format") def to_sql(self, path, table_name): """ Serve the data as sql database. """ self.data[path].to_sql(table_name, con=self.sql_engine, if_exists="replace", index=False) logger.info(f"Loaded to Sqlite3\nPath: {path}", verbose=self.verbose) return self.sql_path def get_sql_path(self): return self.sql_path def __del__(self): if self.sql_engine: drop_table(self.sql_engine) self.sql_engine.dispose() del self.data del self.sql_engine