import torch from colossalai.tensor.op_wrapper import colo_op_impl from colossalai.tensor.colo_tensor import ColoTensor from colossalai.context import ParallelMode from colossalai.nn.layer.parallel_1d._utils import split_forward_gather_backward, reduce_input from colossalai.nn.layer.utils import divide from colossalai.core import global_context as gpc from packaging import version from colossalai.tensor import ComputePattern @colo_op_impl(torch.nn.functional.linear) def colo_linear(types, args, kwargs, pg): """Handles ``__torch_function__`` dispatch for ``torch.nn.functional.linear``. This method computes a linear. """ input_tensor = args[0] weight = args[1] if version.parse(torch.__version__) > version.parse("1.11.0"): if len(args) == 3: bias = args[2] else: bias = None else: bias = kwargs.get('bias', None) if isinstance(bias, ColoTensor): assert bias.shard_spec.num_action == 0, f"We currently only support bias is duplicated among processes in the linear operator" bias = bias.torch_tensor() # Add communication logic before and after linear call. if isinstance(weight, ColoTensor): if weight.shard_spec == None or weight.shard_spec.num_action == 0: if isinstance(input_tensor, ColoTensor): input_tensor = input_tensor.torch_tensor() if isinstance(weight, ColoTensor): weight = weight.torch_tensor() return ColoTensor.init_from_torch_tensor(torch.nn.functional.linear(input_tensor, weight, bias)) elif weight.shard_spec.num_action == 1: if ComputePattern.TP1DRow in weight.shard_spec.compute_patterns: # Input:S[1] x Weight:S[0] = Output:P # All-Reduce(Output) + bias = res assert divide(input_tensor.shape[-1], gpc.tensor_parallel_size) == weight.size(-1), \ 'Invalid shapes in 1Drow forward: input={}, weight={}. Expected last dim of input {}.'.format( input_tensor.shape, weight.size, weight.size(-1) * gpc.tensor_parallel_size) # Input:S[1] if isinstance(input_tensor, ColoTensor): input_tensor = input_tensor.torch_tensor() parallel_action = weight.shard_spec.get_action_by_compute_pattern(ComputePattern.TP1DRow) input_per_partition = split_forward_gather_backward(input_tensor, parallel_action.parallel_mode, dim=-1) # Output:P weight_ = weight.torch_tensor() partial_output = torch.nn.functional.linear(input_per_partition, weight_) # Reduce(Output) output = reduce_input(partial_output, ParallelMode.PARALLEL_1D) # Bias if bias is not None: output = output + bias return ColoTensor.init_from_torch_tensor(output) else: raise NotImplementedError else: raise NotImplementedError else: return torch.nn.functional.linear(input_tensor, weight, bias)