from colossalai.auto_parallel.solver.sharding_strategy import ShardingStrategy, StrategiesVector from typing import List from torch.fx.node import Node class CostGraph: ''' A graph data structure to simplify the edge cost graph. It has two main functions: 1. To feed the quadratic resharding costs into solver, we need to linearize it. We build edge_cost in CostGraph, and it stored every combinations of strategies for a src-dst node pair in an 1D list. 2. To reduce the searching space, we merge computationally-trivial operators, such as element-wise operators, transpose, and reduction, into their following nodes. The merging infomation will be given by the StrategiesVector depending on the type of target node and following nodes. Argument: leaf_strategies(List[StrategiesVector]): It stores StrategiesVector of every nodes on the graph. simplify(bool, optional): The generated cost graph will be simplified if it is true. (default to True) ''' def __init__(self, leaf_strategies, simplify=True): self.leaf_strategies = leaf_strategies # stores number of strategies in each node self.node_lens = {strategies_vector.node: len(strategies_vector) for strategies_vector in self.leaf_strategies} # extra_node_costs will store the extra costs introduced by merging nodes self.extra_node_costs = {} self.simplify = simplify self._build_cost_graph() def _build_cost_graph(self): ''' This method will generate edge_cost for adjacent node pair. Additionally, 'parents' and 'children' attribute will be set to node. ''' self.edge_costs = {} if self.simplify: self.merge_pair = [] for strategies_vector in self.leaf_strategies: # build edge_cost dst_node = strategies_vector.node for src_node in strategies_vector.predecessor_nodes: node_pair = (src_node, dst_node) src_index = strategies_vector.predecessor_nodes.index(src_node) edge_cost = {} for i in range(len(strategies_vector)): for j in range(len(src_node.stategy_vector)): edge_cost[(i, j)] = strategies_vector[i].resharding_costs[src_index][j] self.edge_costs[node_pair] = edge_cost # add parents and children attribute to node setattr(dst_node, 'parents', strategies_vector.predecessor_nodes) setattr(dst_node, 'children', strategies_vector.successor_nodes) if self.simplify and strategies_vector.check_merge(): for following_node in strategies_vector.successor_nodes: self.merge_pair.append((dst_node, following_node)) def get_edge_cost(self, src_node, dst_node): return self.edge_costs[(src_node, dst_node)] def merge_node(self, src_node, dst_node): ''' To merge src_node into dst_node, we need to do it in following steps: 1. For each strategy in dst_node, we need to pick an appropriate strategy of src_node to merge, it is important because the logical resharding costs between the parents node of src_node and merged node depend on the src_node strategies dispatching. For example, for the graph 0->1->2, after merging node 1 into node 2, edge_costs[(node 0, node 2)][(0, 0)] = edge_costs[(node 0, node 1)][(0, x)] x represents the picking strategy of node 1 merged into node 2 strategy 0. 2. We need to accumulate the extra costs introduced by merging nodes, the extra costs contains two parts, one is resharding costs between src_node strategy and dst_node strategy, another is the origin extra costs in src_node strategy. 3. Build connections between new node pairs, and remove the src_node after all consumer nodes detached from it. Argument: src_node(Node): The node will be merged into dst_node. dst_node(Node): The node to integrate src_node. ''' src_node_index = dst_node.parents.index(src_node) # build merge_map merge_map = {} for dst_strate_index, strategy in enumerate(dst_node.strategies_vector): resharding_costs = strategy.resharding_costs resharding_cost_for_src = resharding_costs[src_node_index] lowest_cost_index = resharding_cost_for_src.index(min(resharding_cost_for_src)) merge_map[dst_strate_index] = lowest_cost_index # extra_node_cost for dst node extra_node_costs[dst_node] = [0.0 for _ in range(self.node_lens[dst_node])] for dst_strate_index, strategy in enumerate(dst_node.strategies_vector): target_strate_index = merge_map[dst_strate_index] extra_node_costs[dst_node][dst_strate_index] += strategy.resharding_costs[src_node_index][ target_strate_index] if src_node in extra_node_costs: extra_node_costs[dst_node][dst_strate_index] += extra_node_costs[src_node][target_strate_index] # connect dst node and parents of src node dst_node.parents.remove(src_node) src_node.children.remove(dst_node) node_pair_to_remove = [(src_node, dst_node)] for parent_node in src_node.parents: if parent_node not in dst_node.parents: dst_node.parents.append(parent) if dst_node not in parent_node.children: parent_node.children.append(dst_node) # remove src node from cost graph when src node has no consumer. if len(src_node.children) == 0: parent_node.children.remove(src_node) node_pair = (parent_node, src_node) self.edge_costs.pop(node_pair) # add new node pair to cost graph for parent_node in src_node.parents: new_node_pair = (parent_node, dst_node) old_node_pair = (parent_node, src_node) if new_node_pair in self.edge_costs: continue edge_cost = {} for i in range(self.node_lens[dst_node]): for j in range(self.node_lens[parent_node]): src_strate_index = merge_map[i] edge_cost[(i, j)] = self.edge_costs[old_node_pair][(j, src_strate_index)] self.edge_costs[new_node_pair] = edge_cost def simplify_graph(self): if not self.simplify: return for (src_node, dst_node) in self.merge_pair: self.merge_node(src_node, dst_node)