import pytest import torch from packaging import version from colossalai.kernel.triton import layer_norm from colossalai.testing.utils import parameterize try: pass HAS_TRITON = True except ImportError: HAS_TRITON = False print("please install triton from https://github.com/openai/triton") TRITON_CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse("11.4") @pytest.mark.skipif( not TRITON_CUDA_SUPPORT or not HAS_TRITON, reason="triton requires cuda version to be higher than 11.4" ) @parameterize("M", [2, 4, 8, 16]) @parameterize("N", [64, 128]) def test_layer_norm(M, N): dtype = torch.float16 eps = 1e-5 x_shape = (M, N) w_shape = (x_shape[-1],) weight = torch.rand(w_shape, dtype=dtype, device="cuda") bias = torch.rand(w_shape, dtype=dtype, device="cuda") x = -2.3 + 0.5 * torch.randn(x_shape, dtype=dtype, device="cuda") y_triton = layer_norm(x, weight, bias, eps) y_torch = torch.nn.functional.layer_norm(x, w_shape, weight, bias, eps).to(dtype) assert y_triton.shape == y_torch.shape assert y_triton.dtype == y_torch.dtype print("max delta: ", torch.max(torch.abs(y_triton - y_torch))) assert torch.allclose(y_triton, y_torch, atol=1e-2, rtol=0) if __name__ == "__main__": test_layer_norm()