from abc import ABC, abstractmethod from contextlib import contextmanager from typing import List import torch.nn as nn import tqdm from coati.experience_buffer import NaiveExperienceBuffer from coati.experience_maker import Experience from torch.optim import Optimizer from torch.utils.data import DataLoader from .callbacks import Callback from .strategies import Strategy from .utils import CycledDataLoader, is_rank_0 class SLTrainer(ABC): """ Base class for supervised learning trainers. Args: strategy (Strategy):the strategy to use for training max_epochs (int, defaults to 1): the number of epochs of training process model (nn.Module): the model to train optim (Optimizer): the optimizer to use for training """ def __init__( self, strategy: Strategy, max_epochs: int, model: nn.Module, optimizer: Optimizer, ) -> None: super().__init__() self.strategy = strategy self.max_epochs = max_epochs self.model = model self.optimizer = optimizer @abstractmethod def _train(self, epoch): raise NotImplementedError() @abstractmethod def _eval(self, epoch): raise NotImplementedError() def _before_fit(self): self.no_epoch_bar = False def fit(self, *args, **kwargs): self._before_fit(*args, **kwargs) for epoch in tqdm.trange(self.max_epochs, desc="Epochs", disable=not is_rank_0() or self.no_epoch_bar): self._train(epoch) self._eval(epoch) class OnPolicyTrainer(ABC): """ Base class for on-policy rl trainers, e.g. PPO. Args: strategy (Strategy):the strategy to use for training data_buffer (NaiveExperienceBuffer): the buffer to collect experiences sample_buffer (bool, defaults to False): whether to sample from buffer dataloader_pin_memory (bool, defaults to True): whether to pin memory for data loader callbacks (List[Callback], defaults to []): the callbacks to call during training process """ def __init__( self, strategy: Strategy, data_buffer: NaiveExperienceBuffer, sample_buffer: bool, dataloader_pin_memory: bool, callbacks: List[Callback] = [], ) -> None: super().__init__() self.strategy = strategy self.data_buffer = data_buffer self.sample_buffer = sample_buffer self.dataloader_pin_memory = dataloader_pin_memory self.callbacks = callbacks @contextmanager def _fit_ctx(self) -> None: for callback in self.callbacks: callback.on_fit_start() try: yield finally: for callback in self.callbacks: callback.on_fit_end() @contextmanager def _episode_ctx(self, episode: int) -> None: for callback in self.callbacks: callback.on_episode_start(episode) try: yield finally: for callback in self.callbacks: callback.on_episode_end(episode) def _on_make_experience_start(self) -> None: for callback in self.callbacks: callback.on_make_experience_start() def _on_make_experience_end(self, experience: Experience) -> None: for callback in self.callbacks: callback.on_make_experience_end(experience) def _on_learn_epoch_start(self, epoch: int) -> None: for callback in self.callbacks: callback.on_learn_epoch_start(epoch) def _on_learn_epoch_end(self, epoch: int) -> None: for callback in self.callbacks: callback.on_learn_epoch_end(epoch) def _on_learn_batch_start(self) -> None: for callback in self.callbacks: callback.on_learn_batch_start() def _on_learn_batch_end(self, metrics: dict, experience: Experience) -> None: for callback in self.callbacks: callback.on_learn_batch_end(metrics, experience) @abstractmethod def _make_experience(self, collect_step: int): """ Implement this method to make experience. """ raise NotImplementedError() @abstractmethod def _learn(self, update_step: int): """ Implement this method to learn from experience, either sample from buffer or transform buffer into dataloader. """ raise NotImplementedError() def _collect_phase(self, collect_step: int): self._on_make_experience_start() experience = self._make_experience(collect_step) self._on_make_experience_end(experience) self.data_buffer.append(experience) def _update_phase(self, update_step: int): self._on_learn_epoch_start(update_step) self._learn(update_step) self._on_learn_epoch_end(update_step) def fit( self, prompt_dataloader: DataLoader, pretrain_dataloader: DataLoader, num_episodes: int, num_collect_steps: int, num_update_steps: int, ): """ The main training loop of on-policy rl trainers. Args: prompt_dataloader (DataLoader): the dataloader to use for prompt data pretrain_dataloader (DataLoader): the dataloader to use for pretrain data num_episodes (int): the number of episodes to train num_collect_steps (int): the number of collect steps per episode num_update_steps (int): the number of update steps per episode """ self.prompt_dataloader = CycledDataLoader(prompt_dataloader) self.pretrain_dataloader = CycledDataLoader(pretrain_dataloader) with self._fit_ctx(): for episode in tqdm.trange(num_episodes, desc="Episodes", disable=not is_rank_0()): with self._episode_ctx(episode): for collect_step in tqdm.trange(num_collect_steps, desc="Collect steps", disable=not is_rank_0()): self._collect_phase(collect_step) if not self.sample_buffer: # HACK(cwher): according to the design of boost API, dataloader should also be boosted, # but it is impractical to adapt this pattern in RL training. Thus, I left dataloader unboosted. # I only call strategy.setup_dataloader() to setup dataloader. self.dataloader = self.strategy.setup_dataloader(self.data_buffer, self.dataloader_pin_memory) for update_step in tqdm.trange(num_update_steps, desc="Update steps", disable=not is_rank_0()): self._update_phase(update_step) # NOTE: this is for on-policy algorithms self.data_buffer.clear()