from typing import Optional import torch.nn as nn from transformers.models.opt.configuration_opt import OPTConfig from transformers.models.opt.modeling_opt import OPTModel from ..base import Critic class OPTCritic(Critic): """ OPT Critic model. Args: pretrained (str): Pretrained model name or path. config (OPTConfig): Model config. checkpoint (bool): Enable gradient checkpointing. lora_rank (int): Rank of the low-rank approximation. lora_train_bias (str): LoRA bias training mode. """ def __init__(self, pretrained: Optional[str] = None, config: Optional[OPTConfig] = None, checkpoint: bool = False, lora_rank: int = 0, lora_train_bias: str = 'none', **kwargs) -> None: if pretrained is not None: model = OPTModel.from_pretrained(pretrained) elif config is not None: model = OPTModel(config) else: model = OPTModel(OPTConfig()) if checkpoint: model.gradient_checkpointing_enable() value_head = nn.Linear(model.config.word_embed_proj_dim, 1) super().__init__(model, value_head, lora_rank, lora_train_bias, **kwargs)