#!/usr/bin/env python # -*- encoding: utf-8 -*- from copy import deepcopy from functools import partial import colossalai import pytest import torch import torch.multiprocessing as mp from colossalai.logging import disable_existing_loggers, get_dist_logger from colossalai.testing import parameterize from colossalai.utils import free_port from colossalai.zero.shard_utils import (BucketTensorShardStrategy, TensorShardStrategy) from colossalai.zero.sharded_param import ShardedParam, ShardedTensor from colossalai.zero.sharded_param.sharded_param import ShardedParamV2 from tests.components_to_test.registry import non_distributed_component_funcs from tests.test_zero_data_parallel.common import CONFIG, allclose @parameterize("shard_strategy_class", [TensorShardStrategy, BucketTensorShardStrategy]) def run_shard_tensor_with_strategy(shard_strategy_class, world_size): t = ShardedTensor(tensor=torch.randn(world_size * 2, 3)) assert list(t.origin_shape) == [world_size * 2, 3] assert list(t.shape) == [world_size * 2, 3] shard_strategy = shard_strategy_class() # test shard strategy shard_strategy.shard([t]) assert list(t.shape) == [6], f"{list(t.shape)} vs 6" shard_strategy.gather([t]) assert list(t.shape) == [world_size * 2, 3], f"{list(t.shape)} vs {[world_size * 2, 3]}" def _run_shard_tensor(rank, world_size, port): colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') run_shard_tensor_with_strategy(world_size=world_size) @pytest.mark.dist @pytest.mark.parametrize("world_size", [1, 2]) def test_shard_tensor(world_size): run_func = partial(_run_shard_tensor, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) def _run_shard_param_v2(rank, world_size, port): colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') param = torch.nn.Parameter(torch.randn(2, 3)) param_ref = deepcopy(param) sparam = ShardedParamV2(param=param, process_group=None) allclose(sparam.data.payload, param_ref.data) sparam.remove_torch_payload() assert (param.data.numel() == 1) @pytest.mark.dist @pytest.mark.parametrize("world_size", [1, 2]) def test_shard_param_v2(world_size): run_func = partial(_run_shard_param_v2, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) def _run_test_shard_param(rank, world_size, port): colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') param = torch.nn.Parameter(torch.randn(2, 3)) param_ref = deepcopy(param) sparam = ShardedParamV2(param=param, process_group=None) print(sparam.data) print(param_ref.data) logger = get_dist_logger() for get_components_func in non_distributed_component_funcs: model_builder, *_ = get_components_func() model = model_builder(checkpoint=True) # add an attribute as col_attr to hijack the access to param.data for _, param in model.named_parameters(): numel_ref = (param.numel() + world_size - 1) // world_size param.col_attr = ShardedParam(param) param.col_attr.shard() param_data = param.col_attr.payload(torch.device('cpu')) assert (numel_ref == param_data.numel()) for _, param in model.named_parameters(): param.col_attr.gather() param_data = param.col_attr.payload(torch.device('cpu')) disable_existing_loggers([logger]) @pytest.mark.dist @pytest.mark.parametrize("world_size", [1, 2]) def test_shard_param(world_size): run_func = partial(_run_test_shard_param, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) def _run_init_shard_param(rank, world_size, port): colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') param = torch.nn.Parameter(data=torch.rand(world_size, 3)) sparam = ShardedParam(param, None, True) payload = sparam.payload(torch.device('cuda')) assert (list(payload.shape) == [3]) del sparam param_shape = (world_size, 3) sparam = ShardedParam(param_shape, process_group=None, is_sharded=True, device=torch.device('cpu')) payload = sparam.payload(torch.device('cuda')) assert (list(payload.shape) == [3]) param_shape = (world_size, 3) sparam = ShardedParam(param_shape, process_group=None, is_sharded=False, device=torch.device('cpu')) payload = sparam.payload(torch.device('cuda')) assert (list(payload.shape) == [world_size, 3]) @pytest.mark.dist @pytest.mark.parametrize("world_size", [1, 4]) def test_init_shard_param(world_size): run_func = partial(_run_init_shard_param, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_shard_tensor(2) test_shard_param(2) test_shard_param_v2(2) test_init_shard_param(4)